首页 > 论文 > 液晶与显示 > 33卷 > 9期(pp:787-792)

基于嵌入式车流量实时检测算法研究与实现

Research and implementation of real-time vehicle flow detection algorithm based on embedded system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对道路现场实时车流量检测问题,提出了一种改进的帧间差分法的运动车辆检测算法,并将该检测算法成功移植到了嵌入式系统上。将帧间差分法与采用长度、宽度、面积筛选轮廓及用质心距离的车辆跟踪算法结合,实现运动车辆的检测;将U-Boot引导程序、Linux内核、Yaffs2文件系统和检测算法移植到S3C6410上,通过摄像头实时采集交通视频,检测结果由触摸屏显示。复杂交通场景的实时测试结果表明,本系统的检测时间为0.298秒/帧,准确率超过88%,基本能够实现在道路现场的车流量实时检测。

Abstract

Aiming at the problem of real-time traffic flow in the road, an improved algorithm for moving vehicle detection based on frame subtraction was proposed, and the algorithm was successfully transplanted into the embedded system. The Frame subtraction was combined with vehicle tracking algorithm using length, width, area selection contour and centroid distance to realize the detection of moving vehicle. The U-boot program, Linux kernel, Yaffs2 file system and detection algorithm were transplanted to the S3C6410, and the traffic video was collected through the camera, and the detection results were displayed by the touch-screen. The real-time test results of complex traffic scene show that the detection time of the system is 0.298 seconds/frame, and the accuracy rate is over 88%, which can basically realize the real-time vehicle flow detection in the road scene.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP29

DOI:10.3788/yjyxs20183309.0787

所属栏目:图像处理

基金项目:国家自然科学基金(No.41461078)

收稿日期:2018-03-29

修改稿日期:2018-06-08

网络出版日期:--

作者单位    点击查看

马永杰:西北师范大学 物理与电子工程学院,甘肃 兰州 730070
宋晓凤:西北师范大学 物理与电子工程学院,甘肃 兰州 730070
李雪燕:西北师范大学 物理与电子工程学院,甘肃 兰州 730070
刘姣姣:西北师范大学 物理与电子工程学院,甘肃 兰州 730070

联系人作者:马永杰(myjmyj@nwnu.edu.cn)

备注:马永杰(1967-),男,甘肃灵台人,博士,教授,硕士生导师,主要从事进化算法、测控技术及应用方面的研究。E-mail: myjmyj@nwnu.edu.cn

【1】谢印庆,姜莉,王鲁云,等. 一种快速车流量检测算法[J]. 哈尔滨理工大学学报,2016,21(4):19-24.
XIE Y Q, JIANG L, WANG L Y,et al. A fast vehicle detection algorithm [J]. Journal of Harbin University of Science and Technology, 2016, 21(4): 19-24. (in Chinese)

【2】孙朝云,阳红,高怀刚. 交通雷达测速仪误差分析与改进[J]. 仪器仪表学报,2003,24(4):418-420,440.
SUN C Y, YANG H, GAO H G. Theerror analysis and improving method of traffic radar speed gun [J]. Chinese Journal of Scientific Instrument, 2003, 24(4): 418-420, 440. (in Chinese)

【3】王静静,秦世引. 互补增强式空间运动目标高精度检测与分割[J]. 哈尔滨工业大学学报,2016,48(3):26-32.
WANG J J, QIN S Y. High accuracy detection and segmentation of space moving target by complementary enhancement [J]. Journal of Harbin Institute of Technology, 2016, 48(3): 26-32. (in Chinese)

【4】闵卫东,郭晓光,韩清. 改进的ViBe算法及其在交通视频处理中的应用[J]. 光学 精密工程,2017,25(3):806-811.
MIN W D, GUO X G, HAN Q. An improved ViBe algorithm and its application in traffic video processing [J]. Optics and Precision Engineering, 2017, 25(3): 806-811. (in Chinese)

【5】魏洪涛,李瑾,吴细秀. 融合帧差和ViBe的运动目标检测算法[J]. 计算机应用研究,2017,34(5):1565-1567,1571.
WEI H T, LI J, WU X X. Moving object detection algorithm using ViBe combined with frame-difference [J].Application Research of Computers, 2017, 34(5): 1565-1567, 1571. (in Chinese)

【6】吴斌,叶东,张鑫,等. 非合作目标姿态测量的嵌入式算法[J]. 光学 精密工程,2016,24(11):2804-2813.
WU B, YE D, ZHANG X, et al. Embedded algorithm for relative pose measurement between non-cooperative targets [J]. Optics and Precision Engineering, 2016, 24(11): 2804-2813. (in Chinese)

【7】THE P N, HOANG N A N, NGUYEN T A,et al. Real time ARM-based traffic Level of Service classification system [C]//Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Chiang Mai, Thailand: IEEE, 2016: 1-5.

【8】王艺瑶,严锡君. 基于S3C6410目标搜索飞行器的设计与研究[J]. 电子设计工程,2015(16):130-133.
WANG YY, YAN X J. S3C6410-based design and research of target searching vehicle [J]. Electronic Design Engineering, 2015(16): 130-133. (in Chinese)

【9】于渊博,张涛,郭立红,等. 卫星视频运动目标检测算法[J]. 液晶与显示,2017,32(2):138-143.
YU Y B, ZHANG T, GUO L H, et al. Moving objects detection on satellite video [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(2): 138-143. (in Chinese)

【10】KUMARK, LI J P, ZAIN-UL-ABIDIN, et al. Content based image retrieval using gray scale weighted average method [J]. International Journal of Advanced Computer Science and Applications, 2016, 7(1). DOI: 10.14569/IJACSA.2016.070101.

【11】陈超,罗小华,陈淑群,等. 基于现场可编程门阵列的高斯滤波算法优化实现[J]. 浙江大学学报(工学版),2017,51(5):969-975.
CHEN C, LUO X H, CHEN S Q,et al. Optimizing implementation of Gaussian filter based on field programmable gate array [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(5): 969-975. (in Chinese)

【12】徐芳,刘晶红,曾冬冬,等. 基于视觉显著性的无监督海面舰船检测与识别[J]. 光学 精密工程,2017,25(5):1300-1311.
XU F, LIU J H, ZENG D D, et al. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency [J]. Optics and Precision Engineering, 2017, 25(5): 1300-1311. (in Chinese)

【13】屈晶晶,辛云宏. 连续帧间差分与背景差分相融合的运动目标检测方法[J]. 光子学报,2014,43(7):0710002.
QU J J, XIN Y H. Combined continuous frame difference with background difference method for moving object detection [J].Acta Photonica Sinica, 2014, 43(7): 0710002. (in Chinese)

【14】加里·布拉德斯基,阿德里安·克伯勒. 学习OpenCV[M]. 于仕琪,刘瑞祯,译. 北京:清华大学出版社,2009:135-143.
BRADSKI G, KAEBLER A. Learning OpenCV [M]. YU S Q, LIU R Z, Trans. Beijing: Tsinghua University Press, 2009: 135-143. (in Chinese)

【15】杨琨,曾立波,王殿成. 数学形态学腐蚀膨胀运算的快速算法[J]. 计算机工程与应用,2005,41(34):54-56.
YANG K, ZENG L B, WANGD C. A fast arithmetic for the erosion and dilation operations of mathematical morphology [J]. Computer Engineering and Applications, 2005, 41(34): 54-56. (in Chinese)

引用该论文

MA Yong-jie,SONG Xiao-feng,LI Xue-yan,LIU Jiao-jiao. Research and implementation of real-time vehicle flow detection algorithm based on embedded system[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 787-792

马永杰,宋晓凤,李雪燕,刘姣姣. 基于嵌入式车流量实时检测算法研究与实现[J]. 液晶与显示, 2018, 33(9): 787-792

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF