首页 > 论文 > 液晶与显示 > 33卷 > 9期(pp:801-807)

一种指纹奇异点区域图像增强算法

Fingerprint singularity region image enhancement algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

指纹图像奇异点附近区域的增强一直是指纹图像增强的难点,针对Separable Gabor滤波会破坏指纹邻近奇异点区域的纹线结构,方向傅里叶滤波在一般区域修复指纹纹线效果不明显这一问题,本文融合两种算法的优势,提出一种新的滤波方法(FS-Gabor)。先对指纹图像进行预处理,得到指纹的方向、频率信息和掩膜信息。接着找出指纹图像的奇异点,并在奇异点附近标记出一定大小区域。最后根据像素点的位置采用不同的滤波方法。同时,本文提出了一种改进的指纹图像频率估计方法,扩大了指纹图像有效区域面积。实验结果表明,经本文方法滤波的指纹图像的EER(Equal Error Rate)比方向傅里叶滤波低26%,比Separable Gabor低49%。

Abstract

Enhancement of fingerprint image near the singularity point is a big challenge in the fingerprint image enhancement. However, the ridge structure near the singular point of the fingerprint can be destroyed by the current Separable Gabor filter algorithm. And the performance in repairing the fingerprint ridge is bad by the current directional Fourier filter algorithm. These result in the bad performance in fingerprint image enhancement of the current Separable Gabor filter algorithm and Fourier filter algorithm. In order to improve the performance in the fingerprint image enhancement, this paper combines the advantages of the two algorithms and proposes the Fourier Separable Gabor algorithm (FS-Gabor). In the proposed FS-Gabor algorithm, the fingerprint image is preprocessed to obtain the fingerprint direction, frequency information and mask information firstly. Then in order to repaire the fingerprint ridge, the algorithm marks the area near the singular point as the aim filter area in the fingerprint image. Finally, different filtering methods are chosen to obtain the aim fingerprint image according to the position of the pixel. In addition, in order to expand the effective area of fingerprint image, an improved fingerprint image frequency estimation method is proposed in the FS-Gabor algorithm. According to the experiment results, it is indicated that the EER of fingerprint image filtered by the FS-Gabor algorithm is 26% lower than the directional Fourier filter algorithm and 49% lower than the Separable Gabor algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20183309.0801

所属栏目:图像处理

基金项目:国家自然科学基金(No. 61372060);中央高校基本科研业务费

收稿日期:2018-02-26

修改稿日期:2018-06-06

网络出版日期:--

作者单位    点击查看

席诗琼:南开大学 光电子薄膜器件与技术研究所 光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室,天津 300350
韩胜:南开大学 光电子薄膜器件与技术研究所 光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室,天津 300350
耿卫东:南开大学 光电子薄膜器件与技术研究所 光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室,天津 300350

联系人作者:耿卫东(gengwd@nankai.edu.cn)

备注:耿卫东(1955-),男,河北沧州人,教授,博士生导师,主要从事平板显示技术与混合信号集成电路设计研究。E-mail:gengwd@nankai.edu.cn

【1】WANG Z F, CHEN S H, BUSCH C, et al. Performance evaluation of fingerprint enhancement algorithms [C]//Proceedings of 2018 Congress on Image and Signal Processing. Sanya, Hainan, China: IEEE, 2008: 389-393.

【2】MEI Y, ZHAO B, ZHOU Y, et al. Orthogonal curved-line Gabor filter for fast fingerprint enhancement [J]. Electronics Letters, 2014, 50(3): 175-177.

【3】赵建. 分数阶微分在图像纹理增强中的应用[J]. 液晶与显示,2012,27(1):121-124.
ZHAO J. Fractional differential and its application in image texture enhancement [J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(1): 121-124. (in Chinese)

【4】郝志成,吴川,杨航,等. 基于双边纹理滤波的图像细节增强方法[J]. 中国光学,2016,9(4):423-431.
HAO Z C, WU CH, YANG H, et al. Image detail enhancement method based on multi-scale bilateral texture filter [J]. Chinese Optics, 2016, 9(4): 423-431. (in Chinese)

【5】王浩,张叶,沈宏海,等. 图像增强算法综述[J]. 中国光学,2017,10(4):438-448.
WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms [J]. Chinese Optics, 2017, 10(4): 438-448. (in Chinese)

【6】CHIKKERUR S, WU C H, GOVINDARAJU V. A systematic approach for feature extraction in fingerprint images [C]//Proceedings of the First International Conference, ICBA 2004. Hong Kong, China: Springer, 2004, 3072: 344-350.

【7】GOTTSCHLICH C. Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement [J]. IEEE Transactions on Image Processing, 2012, 21(4): 2220-2227.

【8】ZAHEDI M, GHADI O R. Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation [J]. Signal Image and Video Processing, 2015, 9(2): 267-275.

【9】AGUILAR G, SANCHEZ G, TOSCANO K, et al. Multimodal biometric system using fingerprint [C]//Proceedings of 2007 International Conference on Intelligent and Advanced Systems. Kuala Lumpur, Malaysia: IEEE, 2007: 145-150.

【10】BARTUNEK J S, NILSSON M, SALLBERG B, et al. Adaptive fingerprint image enhancement with emphasis on preprocessing of data [J]. IEEE Transactions on Image Processing, 2013, 22(2): 644-656.

【11】YANG J W, LIU L F, JIANG T Z, et al. A modified Gabor filter design method for fingerprint image enhancement [J]. Pattern Recognition Letters, 2003, 24(12): 1805-1817.

【12】HONG L, WAN Y F, JAIN A. Fingerprint image enhancement: algorithm and performance evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 777-789.

【13】AREEKUL V, WATCHAREERUETAI U, SUPPASRIWASUSETH K, et al. Separable Gabor filter realization for fast fingerprint enhancement [C]//Proceedings of 2005 IEEE International Conference on Image Processing. Genova, Italy: IEEE, 2005: III253-III256.

【14】SHERLOCK B G, MONRO D M, MILLARD K. Fingerprint enhancement by directional Fourier filtering [J]. IEE Proceedings- Vision, Image, and Signal Processing, 1994, 141(2): 87-94.

【15】KAWAGOE M, TOJO A. Fingerprint pattern classification [J]. Pattern Recognition, 1984, 17(3): 295-303.

【16】MALTONI D, MAIO D, JAIN A K, et al. Handbook of Fingerprint Recognition[M]. New York: Springer, 2005.

【17】ITO K, MORITA A, AOKI T, et al. A fingerprint recognition algorithm using phase-based image matching for low-quality fingerprints [C]//Proceedings of 2005 IEEE International Conference on Image Processing. Genova, Italy: IEEE, 2005: II33-II36.

引用该论文

XI Shi-qiong,HAN Sheng,GENG Wei-dong. Fingerprint singularity region image enhancement algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 801-807

席诗琼,韩胜,耿卫东. 一种指纹奇异点区域图像增强算法[J]. 液晶与显示, 2018, 33(9): 801-807

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF