首页 > 论文 > 液晶与显示 > 33卷 > 10期(pp:884-892)

遥感图像的MAP超分辨重建

MAP super-resolution reconstruction of remote sensing image

刘涛   钱锋   张葆  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

遥感根本目的就是获得清晰的高空间分辨率的图像,从而可以进一步地分析处理。为了在遥感测量中获得更高空间分辨率、更高信噪比、更清晰的图像,本文对图像处理领域超分辨算法进行了研究。建立了一套拟合模拟现实的成像系统模型,在这种模型的基础之上,利用最大后验概率系统理论,讨论了现实情况中的运动模糊,噪声等情况,改进了MAP超分辨算法。实验结果表明:使用本文改进的基于MAP理论的Markov随机场约束的多帧超分辨重建算法,可以较好提高超分辨效果,与三次立方插值方法相比,PSNR至少提高约5.1 dB左右,与未改进的MAP方法相比,PSNR提高约0.2 dB左右。本文提出了动态的先验约束方法,给约束函数添加与迭代次数相关的约束项,该改进创新可以加快收敛并且更加逼近真实图像,实验表明该方法收敛速度更快,约束效果良好,更适合实际应用。

Abstract

The fundamental purpose of remote sensing is to obtain clear images with high spatial resolution, which can be further analyzed and processed. In order to obtain higher spatial resolution, higher signal-to-noise ratio and clearer images in remote sensing measurement, this paper studies the superresolution algorithm in image processing field. In the paper we set up a model fitting the real imaging system, use the theory of maximum a posteriori probability system on this model, discuss the motion blur, noise and other degrading factors, and finally improve the MAP superresolution algorithm. The experimental results show that the improved multi-frame superresolution reconstruction algorithm in the paper based on the Markov constraint field which is originated from the MAP theory, can improve the superresolution performance significantly. Using our method, PSNR is at least about 5.1 dB higher than the cubic interpolation method, and is about 0.2 dB higher than the unimproved MAP method. In our paper a dynamic prior constraint method is proposed, by adding constraints associated with the number of iterations to constraint function, the improvement innovation can accelerate convergence and more close to real images. And the experiments show that this method can fasten the convergence, and its constraint effect is good. Above all, it is more suitable for practical application.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20183310.0884

所属栏目:图像处理

基金项目:国家自然科学基金(No.61705225)

收稿日期:2018-06-04

修改稿日期:2018-07-09

网络出版日期:--

作者单位    点击查看

刘涛:中国科学院长春光学精密机械与物理研究所,吉林 长春 130033中国科学院大学,北京 100049
钱锋:中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
张葆:中国科学院长春光学精密机械与物理研究所,吉林 长春 130033

联系人作者:张葆(cleresky@vip.sina.com)

备注:刘涛(1993-),男,山东烟台人,硕士研究生,2016年于兰州大学物理学院获得理学学士学位,主要从事机器视觉图像处理图像超分辨重建等方面研究。E-mail: m15526864901@163.com

【1】何林阳.航空图像超分辨率重建关键技术研究 [D]. 长春:中国科学院大学(长春光学精密机械与物理研究所),2016.
HE L Y. Research on key techniques of super-resolution reconstruction of aerial images [D]. Changchun: University of the Chinese Academy of Sciences (CIOMPS), 2016. (in Chinese)

【2】WANG T W, SUN W J, QI H R, et al. Aerial Image super resolution via wavelet multiscale convolutional neural networks [J]. IEEE Geoscience and Remote Sensing Letters, 2018, doi: 10.1109/LGRS.2018.2810893.

【3】REN C, HE X H, PU Y F. Nonlocal similarity modeling and deep CNN gradient prior for super resolution [J]. IEEE Signal Processing Letters, 2018, 25(7): 916-920.

【4】LIU D, WANG Z W, FAN Y C, et al. Learning temporal dynamics for video super-resolution: a deep learning approach [J]. IEEE Transactions on Image Processing, 2018, 27(7): 3432-3445.

【5】REZAYI H, SEYEDIN S A. Huber Markov random field for joint super resolution [C]//2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP). Isfahan, Iran: Isfahan University of Technology, 2017.

【6】BAO W B, ZHANG X Y, YAN S P, et al. Iterative convolutional neural network for noisy image super-resolution [C]//2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE, 2017.

【7】ZHA Z Y, LIU H, LI J K. Based on the technique of regularization MAP super-resolution image reconstruction algorithm [C]//2014 Seventh International Symposium on Computational Intelligence and Design. Washington, DC, USA: IEEE Computer Society, 2014.

【8】ZHANG H Y, ZHANG L P, SHEN H F, et al. A MAP approach for joint image registration, blur identification and super resolution [C]//2009 Fifth International Conference on Image and Graphics. Xi''an: IEEE, 2009.

【9】HFNER M, LIEDLGRUBER M, UHL A. POCS-based super-resolution for HD endoscopy video frames [C]//Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. Porto, Portugal: IEEE, 2013.

【10】朱齐丹,孙磊,蔡成涛.多正则化形式的超分辨率图像重建[J]. 光电工程,2015,42(1):45-50.
ZHU Q D, SUN L, CAI C T. Image super-resolution with multiple regularized terms [J]. Opto-Electronic Engineering, 2015, 42(1): 45-50. (in Chinese)

【11】刘颖,权婉,伍世虔.基于边缘增强的正则化超分辨率图像重建[J]. 西安邮电大学学报,2016,21(6):14-19.
LIU Y, QUAN W, WU S Q. Regularized super-resolution image reconstruction based on edge enhancement [J]. Journal of Xi''an University of Posts and Telecommunications, 2016, 21(6): 14-19. (in Chinese)

【12】韩玉兰,赵永平,王启松,等.稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程,2017,25(6):1619-1626.
HAN Y L, ZHAO Y P, WANG Q S, et al. Sparse representation of noise image super-resolution reconstruction [J]. Optics and Precision Engineering, 2017, 25(6): 1619-1626. (in Chinese)

【13】孙刚.基于MAP的红外图像超分辨率重建算法研究[D]. 西安:西安电子科技大学,2008.
SUN G. Research on the algirithm of super-resolution reconstruction of infrared images based on MAP [D]. Xi''an: Xidian University, 2008. (in Chinese)

【14】穆绍硕.基于多帧影像的航空超分辨成像技术研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2017.
MU S S. Research on super-resolution imaging techniques of multi-frame aerial images [D]. Changchun: University of the Chinese Academy of Sciences (CIOMPS), 2017. (in Chinese)

【15】康凯.图像超分辨率重建研究[D]. 合肥:中国科技大学,2016.
KANG K. A study on image super-resolution reconstruction [D]. Hefei: University of Science and Technology of China, 2016. (in Chinese)

【16】孙辉,马天玮.基于相位相关的目标图像亚像元运动参数估计[J]. 液晶与显示,2011,26(6):858-862.
SUN H, MA T W. Sub-pixel motion estimation based on phase-only correlation [J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(6): 858-862. (in Chinese)

【17】WEN R, FU K, SUN H, et al. Image superresolution using densely connected residual networks[J]. IEEE Signal Processing Letters. 2018;25(10):1565-1569.

【18】RASTI P, DEMIREL H, ANBARJAFARI G. Iterative back projection based image resolution enhancement[C]//2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP). Zanjan, Iran: IEEE, 2013.

【19】IYANDA C A, YAAKOB S N B, NAWIR M. Uniqueness of iterative back projection in super resolution techniques[C]//2016 3rd International Conference on Electronic Design (ICED). Phuket, Thailand: IEEE, 2016.

【20】谭周燚,黄自力,王雪梅,等.基于结构自适应归一化卷积的超分辨率红外图像重建[J]. 电子技术,2017,46(2):13-20.
TAN Z Y, HUANG Z L, WANG X M, et al. Infrared image super-resolution based on the structure-adaptive normalized convolution [J]. Electronic Technology, 2017, 46(2): 13-20. (in Chinese)

引用该论文

LIU Tao,QIAN Feng,ZHANG Bao. MAP super-resolution reconstruction of remote sensing image[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10): 884-892

刘涛,钱锋,张葆. 遥感图像的MAP超分辨重建[J]. 液晶与显示, 2018, 33(10): 884-892

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF