首页 > 论文 > 液晶与显示 > 33卷 > 10期(pp:893-900)

基于哈达玛矩阵编码测量的自适应压缩成像

Adaptive compressed sampling imaging based on hadamard matrix coding measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了消除采样过程中的噪声干扰,进一步提高重构图像质量,针对数字微镜阵列(DMD)与桶探测器在测量过程中点对点采样产生的起伏噪声导致图像信噪比降低的问题,提出基于哈达玛矩阵编码测量的压缩采样成像方法。首先采用DMD分区控制方法,利用哈达玛编码测量,计算获得低分辨率的粗糙图像,接着在预测的重要小波系数所在区域,对同一尺度上的重要区域利用哈达玛矩阵进行投影,同时计算出这些区域的小波系数,最后通过小波逆变换获得重构图像。实验表明,在测量噪声为0.2倍的热噪声下,只需要10%的采样率,通过哈达玛编码测量,图像峰值信噪比从1398 dB最高提高到34.56 dB,提高了20.58 dB,成像质量明显改善,清晰度高。当存在较大的测量噪声时,该方法可以大幅提高图像的信噪比,尤其适用于微弱光信号条件下的高灵敏压缩采样成像。

Abstract

In order to eliminate the noise interference in the sampling process and to further improve the quality of reconstructed images, a compressed sampling imaging method based on Hadamard matrix encoding measurement is proposed to reduce the signal to noise ratio of the Digital Micro-mirror Device (DMD) and the bucket detector in the measurement process. First, using the DMD zoning control method, the rough image of low resolution is obtained by the Hadamard coding measurement. Then, the important region of the predicted wavelet coefficients is projected with the Hadamard matrix on the important region on the same scale, and the wavelet coefficients of these regions are calculated. Finally, the wavelet inverse transformation is used to get the reconstructed images. The experiment shows that under 0.2 times the thermal noise, only 10% of the sampling rate is needed. The peak signal to noise ratio(PSNR) of the image is increased from 13.98 dB to 34.56 dB by the Hadamard code, which is improved by 20.58 dB, the image quality is obviously improved and the definition is better. Under weak light signal, when there is a large measurement noise, the method can achieve high SNR with low sampling rate.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751

DOI:10.3788/yjyxs20183310.0893

所属栏目:图像处理

基金项目:武器装备预先研究项目(No. 30102070201)

收稿日期:2018-08-08

修改稿日期:2018-09-10

网络出版日期:--

作者单位    点击查看

骆乐:南京理工大学 电子工程与光电技术学院,江苏 南京 210000
陈钱:南京理工大学 电子工程与光电技术学院,江苏 南京 210000
戴慧东:南京理工大学 电子工程与光电技术学院,江苏 南京 210000
顾国华:南京理工大学 电子工程与光电技术学院,江苏 南京 210000
何伟基:南京理工大学 电子工程与光电技术学院,江苏 南京 210000

联系人作者:何伟基(hewj@mail.njust.edu.cn)

备注:骆乐(1986-),男,江苏宿迁人,博士研究生,主要从事光学成像和光电探测等方面的研究。E-mail:wslla@126.com

【1】张杰, 史小平. 结合压缩感知和曲波的天文图像去噪[J]. 光学精密工程, 2017,25(5): 1387-1394.
ZhANG J, SHI X P, Astronomical image denoising with compressed sensing and curvelet[J]. Optics and Precision Engineering, 2017,25(5): 1387-1394. (in Chinese)

【2】闫歌, 许廷发, 马旭,等. 动态测量的高光谱图像压缩感知[J]. 中国光学, 2018,11(4): 550-559.
YAN G, XU T F, MA X, et al. Hyperspectral image compression sensing based on dynamic measurement[J].Editorial Committee of Chinese Optics, 2018,11(4): 550-559. (in Chinese)

【3】王昕, 吉桐伯, 刘富. 结合目标提取和压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2016,24(7): 1743-1753.
WANG X, JI B T, LIU F. Fusion of infrared and visible images based on target segmentation and compressed sensing[J].Optics and Precision Engineering, 2016,24(7): 1743-1753. (in Chinese)

【4】LI Q F, GUO K Y, TANG B, et al. Scattering center modelling based on compressed sensing principle from under-sampling scattering field data[C].Geoscience and Remote Sensing Symposium. IEEE, 2016:2672-2675.

【5】朱明, 高文, 郭立强. 压缩感知理论在图像处理领域的应用[J]. 中国光学, 2011,4(5): 441-447
ZHU M, GAO W, GUO L Q. Application of compressed sensing theory in image processing.[J].Chinese Optics, 2011,4(5): 441-447(in Chinese)

【6】DUARTE M F, Davenport M A, Takhar D,et al. Single-Pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, Special Issue on Compressive Sampling, 2008, 25(2):83-91.

【7】杨鹰, 孔玲君, 刘真. 基于压缩感知的多光谱图像去马赛克算法[J]. 液晶与显示, 2017, 32(1): 56-61.
YANG Y, KONG L J, LIU Z. Multi-spectral demosaicking method based on compressive sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(1): 56-61.

【8】任越美, 张艳宁, 李映. 压缩感知及其图像处理应用研究进展与展望[J]. 自动化学报, 2014, 40 (8): 1563-1575.
REN Y M, ZHANG Y N, LI Y. Advances and perspective on compressed sensing and application on image processing[J]. Acta Automatica Sinica, 2014, 40 (8): 1563-1575.

【9】BERINDE R, INDIK P. Sparse recovery using sparse random matrices[R]. Latin American Conference on Theoretical Informatics, 2010,6034:157-157.

【10】LU G, DO T T, TRAN T D.Fast compressive imaging using scrambled block Hadamard ensemble[C], European Signal Processing Conference, 2010:1-5.

【11】DUARTE M, DAVENPORT M, TAKHAR D,et al, Single-pixel imaging via compressive sampling[J], IEEE Signal Process Magazine, 2008, 25(2):83-91.

【12】WAKIN M, LASKA J, DUARTE M,et al. An architecture for compressive imaging[C]. Proceedings of IEEE Conference on Image Processing, 2006, 1273-1276.

【13】STREETER L, BURLINGCLARIDGE G R, CREE M J,et al. Optical full Hadamard matrix multiplexing and noise effects[J]. Applied Optics, 2009, 48(11): 2078-2085.

【14】MIZUNO T, IWATA T. Hadamard-transform fluorescence-lifetime imaging[J].Optics Express, 2016, 24(8): 8202-8013.

【15】SUN M J, MENG L T, EDGAR M P, et al. A Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Report, 2017, 7(1): 3464-3470.

【16】DAI H D, GU G H, HE W J,et al. Adaptive compressed sampling based on extended wavelet trees[J]. Applied Optics, 2014, 53(29): 6619-6628.

【17】HARWIT M, SLOANE N J A. Hadamard Transform Optics [M]. New York: Academic Press, 1979.

【18】ZhANG W K, ZHANG Z H, GAO L X. Study of using complementary S matrix to enhance SNR in Hadamard spectrometer[J]. International Journal for Light and Electron Optics, 2014, 125(3): 1124-1127.

【19】张毅, 王勇, 岳江, 等. DMD 编码哈达玛变换高灵敏成像[J]. 红外与激光工程, 2015, 44(12): 3819-3824.
ZHANG Y, WANG Y, YUE J,et al. High sensitivity imaging based on DMD coding Hadamard Transform[J]. Infrared and Laser Engineering, 2015, 44(12): 3819-3824.

引用该论文

LUO Le,CHEN Qian,DAI Hui-dong,GU Guo-hua,HE Wei-ji. Adaptive compressed sampling imaging based on hadamard matrix coding measurement[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(10): 893-900

骆乐,陈钱,戴慧东,顾国华,何伟基. 基于哈达玛矩阵编码测量的自适应压缩成像[J]. 液晶与显示, 2018, 33(10): 893-900

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF