首页 > 论文 > 液晶与显示 > 33卷 > 11期(pp:936-942)

基于Gabor和灰度共生矩阵混合特征叶片泵装配质量检测

Vane pump assembly quality detection based on gabor and gray level co-occurrence matrix hybrid characteristics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文提出一种Gabor和灰度共生矩阵相结合的特征来检测叶片泵中叶片装配质量的方法。首先构建叶片图像数据集,用5种尺度的和4种方向的Gabor滤波器对图像滤波,根据滤波后的图像计算得到幅值特征图,然后提取幅值特征图的灰度共生矩阵特征,最后融合归一化各个幅值特征图提取到的特征,利用主成分分析法降维,并用这些特征向量训练支持向量机(SVM)分类器,实现对叶片装配质量的评估。将本文提出的混合特征与LBP特征、灰度共生矩阵分别进行了比较得到的分类效果约提高了约10%。基于Gabor和灰度共生矩阵混合特征的叶片装配质量检测准确率提升到了93%。实验结果表明Gabor特征和灰度共生矩阵结合后能够很好从多尺度、多方向上提取图像的纹理特征,并应用于图像分类取得了良好的效果,在一些图像识别上有很宽广的应用前景。

Abstract

This paper presents a method to detect blade assembly quality in a vane pump by features of the combination of Gabor and gray level co-occurrence matrix. Firstly, the blade image dataset is constructed, and the image is filtered by five-scale and four-direction Gabor filters. The amplitude feature map is calculated on the basis of the filtered image, and then the gray level co-occurrence matrix feature of the amplitude feature map is extracted. Finally, we combine and normalize the features extracted from each feature map, reduce the dimensions by principal component analysis, train the support vector machine (SVM) classifier with these feature vectors to achieve the evaluation of blade assembly quality. Respectively comparing mixing features proposed in this paper with the LBP features and gray level co-occurrence matrix, the classification effect is improved by about 10%. The classification effect of blade assembly quality is improved to 93% based on the combination of Gabor and gray level co-occurrence matrix. The experimental results show that the combination of Gabor features and gray level co-occurrence matrix can extract texture features by multi-scale and multi-directions, and obtain good results by applying to image classification. It has wide application prospects in some image recognition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/yjyxs20183311.0936

所属栏目:图像处理

基金项目:长春市重点科技攻关项目(No.17DY008)

收稿日期:2018-05-29

修改稿日期:2018-07-27

网络出版日期:--

作者单位    点击查看

刘康:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033中国科学院大学,北京 100049
陈小林:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
刘岩俊:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
梁浩:中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033中国科学院大学,北京 100049

联系人作者:陈小林(654040216@qq.com)

备注:刘康(1992-),男,河北石家庄人,硕士研究生,研究方向为:图像处理,目标跟踪与识别。E-mail:L12Kang30@163.com

【1】冯伟兴,唐墨,贺波.Visual C++数字图像模式识别技术详解[M].北京:机械工业出版社,2010.
FENG W X, TANG M, HE B.Digital Image Pattern Recognition Programming Using Visual C++ [M]. Beijing: Machinery Industry Press, 2010. (in Chinese)

【2】王玮,黄非非,李见为,等.使用多尺度LBP特征描述与识别人脸[J].光学 精密工程,2008,16(4):696-705.
WANG W, HUANG F F, LI J W,et al. Face description and recognition using multi-scale LBP feature [J]. Optics and Precision Engineering, 2008, 16(4): 696-705. (in Chinese)

【3】刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635.
LIU L, KUANG G Y. Overview of image textural feature extraction methods [J].Journal of Image and Graphics, 2009, 14(4): 622-635. (in Chinese)

【4】黄媛媛,张尤赛.双树复小波域共生矩阵的纹理特征提取方法[J].计算机应用与软件,2012,29(7):216-219,230.
HUANG Y Y, ZHANG Y S. Texture feature extraction methodwith dual-tree complex wavelet domain co-occurrence matrix [J]. Computer Applications and Software, 2012, 29(7): 216-219, 230. (in Chinese)

【5】王民,王静,王羽笙.一种多尺度灰度共生矩阵的纹理特征提取算法[J].液晶与显示,2016,31(10):967-972.
WANG M, WANG J, WANG Y S. Multi-scalealgorithm of texture feature extraction based on gray-level co-occurrence matrix [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(10): 967-972. (in Chinese)

【6】胡敏,朱弘,王晓华,等.基于梯度Gabor直方图特征的表情识别方法[J].计算机辅助设计与图形学学报,2013,25(12):1856-1861.
HU M, ZHU H, WANG X H, et al. Expression recognition method based on gradient Gabor histogram features [J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(12): 1856-1861. (in Chinese)

【7】肖达,王润民,邹孝,等.基于Gabor变换和灰度梯度共生矩阵的超声无损测温研究[J].传感技术学报,2017,30(11):1684-1688.
XIAO D, WANG R M, ZOU X,et al. A noninvasive temperature measurement based on Gabor transform and gray level gradient co-occurrence matrix using ultrasound [J]. Chinese Journal of Sensors and Actuators, 2017, 30(11): 1684-1688. (in Chinese)

【8】黄荣娟,姜佳欣,唐银凤,等.基于多特征组合的图像纹理分类[J].计算机应用与软件,2011,28(8):12-16,46.
HUANG R J, JIANG J X, TANG Y F,et al. Feature combination based image texture classification [J]. Computer Applications and Software, 2011, 28(8): 12-16, 46. (in Chinese)

【9】宋荣杰,宁纪锋,刘秀英,等.基于纹理特征和SVM的QuickBird影像苹果园提取[J].农业机械学报,2017,48(3):188-197.
SONG R J, NING J F, LIU X Y,et al. Apple orchard extraction with QuickBird imagery based on texture features and support vector machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 188-197. (in Chinese)

【10】孔锐,张冰.Gabor滤波器参数设置[J].控制与决策,2012,27(8):1277-1280.
KONG R, ZHANG B. Design of Gabor filters′ parameter [J].Control and Decision, 2012, 27(8): 1277-1280. (in Chinese)

【11】赵川源,何东健,乔永亮.基于多光谱图像和数据挖掘的多特征杂草识别方法[J].农业工程学报,2013,29(2):192-198.
ZHAO C Y, HE D J, QIAO Y L. Identification method of multi-feature weed based on multi-spectral images and data mining [J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 192-198. (in Chinese)

【12】耿庆田,赵浩宇,于繁华,等.基于改进HOG特征提取的车型识别算法[J].中国光学,2018,11(2):174-181.
GENG Q T, ZHAO H Y, YU F H,et al. Vehicle type recognition algorithm based on improved HOG feature [J]. Chinese Optics, 2018, 11(2): 174-181. (in Chinese)

【13】周书仁,殷建平.基于Haar特性的LBP纹理特征[J].软件学报,2013,24(8):1909-1926.
ZHOU S R, YIN J P. LBP texture feature based on Haar characteristics [J].Journal of Software, 2013, 24(8): 1909-1926. (in Chinese)

引用该论文

LIU Kang,CHEN Xiao-lin,LIU Yan-jun,LIANG Hao. Vane pump assembly quality detection based on gabor and gray level co-occurrence matrix hybrid characteristics[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(11): 936-942

刘康,陈小林,刘岩俊,梁浩. 基于Gabor和灰度共生矩阵混合特征叶片泵装配质量检测[J]. 液晶与显示, 2018, 33(11): 936-942

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF