首页 > 论文 > 液晶与显示 > 33卷 > 11期(pp:965-971)

基于YOLO模型的宫颈细胞簇团智能识别方法

Intelligent recognition method of cervical cell cluster based on YOLO model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对宫颈细胞簇团自动识别问题,本文提出了一种基于YOLO v2模型的智能识别方法。首先,针对宫颈细胞簇团识别任务的特点,采用resnet 50模型作为YOLO v2网络的基础特征提取模块。同时,提出了相应的数据扩增方法与YOLO v2网络的训练方案。同时,我们收集宫颈细胞液基涂片扫描图像,建立了宫颈细胞簇团图像数据集,并由细胞病理专家对其中的细胞簇团进行了标注。实验表明,本文方法能够有效完成宫颈细胞病变簇团的自动识别,在测试图像集中,针对细胞簇团识别的准确率为75.9%,召回率为863%;针对宫颈细胞图像识别的准确率为87.0%,召回率为867%。本文将深度学习技术引入到宫颈细胞辅助筛查领域,对于促进宫颈癌早期自动筛查系统的研究,具有重要意义。

Abstract

Aiming to the automatic recognition of cervical cell cluster, a smart recognition method based on YOLO v2 model was proposed. At first, the model resnet50 was used as basic feature extraction module according to the characters of cervical cell cluster recognition task. Meanwhile, the related data amplification and training program of YOLO v2 network were also proposed. At the same time, we collect the scan image of cervical cell liquid base smear to build the cervical cell cluster image data set and the cell cluster was marked by cytopathic experts. The result shows that the automatic recognition of cervical cell cluster was effectively realized with this method. The accuracy rate of cervical cell cluster was 75.9% and the recall rate was 86.3%. The accuracy rate of cervical cell pathological identification was 87.0% and the recall rate was 86.7%. In this paper, deep learning technique was leaded into the cervical cell auxiliary screening field, it can promote the research of automatic auxiliary screening of early cervical cancer.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20183311.0965

所属栏目:图像处理

基金项目:国家自然科学基金面上项目(No.61775030);中国科学院光束控制重点实验室基金(No.2017LBC003);广东省应用型研发重大专项基金(No.2015BD10131002)

收稿日期:2018-08-02

修改稿日期:2018-08-29

网络出版日期:--

作者单位    点击查看

郑欣:电子科技大学 计算机科学与工程学院,四川 成都 611731
田博:成都九鼎天元知识产权代理有限公司,四川 成都 610041
李晶晶:江苏科技大学 计算机科学与工程学院,江苏 镇江 212003

联系人作者:李晶晶(ljj121607@163.com)

备注:郑欣 (1981-),男,四川绵阳人,博士后;研究方向:深度学习、机器学习技术在医疗及大健康领域的应用。E-mail:1820745320@qq.com

【1】ASHTARIAN H, MIRZABEIGI E, MAHMOODI E, et al. Knowledge about cervical cancer and pap smear and the factors influencing the pap test screening among women [J]. International Journal of Community Based Nursing & Midwifery, 2017, 5(2): 188-195.

【2】MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions [J]. Image and Vision Computing, 2004, 22(10): 761-767.

【3】NOSRATI M, HAMARNEH G. Segmentation of overlapping cervical cells: a variational method with star-shape prior [C]//Preceedings of 2015 IEEE 12th International Symposium on Biomedical Imaging. New York, NY, USA: IEEE, 2015: 186-189.

【4】BRADLEY A P, BAMFORD P C. A one-pass extended depth of eld algorithm based on the over-complete discrete wavelet transform [C]//Image and Vision Computing ''04 New Zealand. Akaroa: IEEE, 2010: 279-284.

【5】USHIZIMA D M, BIANCHI A G C, CARNEIRO C. M. Segmentation of subcellular compartments combining superpixel representation with voronoi diagrams [C]//Overlapping Cervical Cytology Image Segmentation Challenge. Beijing, China: IEEE, 2014: 286-292.

【6】LU Z, CARNEIRO G, BRADLEY A P. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells [J]. IEEE Transactions on Image Processing, 2015, 24(4): 1261-1272.

【7】PHOULADY H A, GOLDGOF D B, HALL L O, et al. An approach for overlapping cell segmentation in multi-layer cervical cell volumes [C]//Proceedings of the 2015 12th IEEE International Symposium on Biomedical Imaging. New York, NY, USA: IEEE, 2015: 186-187.

【8】LATSUZBAIA A, HEBETTE G, FISHER M, et al. Introduction of liquid-based cytology and human papillomavirus testing in cervical cancer screening in Luxembourg [J]. Diagnostic Cytopathology, 2017, 45(5): 384-390.

【9】REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.

【10】HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.

【11】李宇,刘雪莹,张洪群,等.基于卷积神经网络的光学遥感图像检索[J].光学 精密工程,2018,26(1):200-207.
LI Y, LIU X Y, ZHANG H Q, et al. Optical remote sensing image retrieval based on convolutional neural networks [J]. Optics and Precision Engineering, 2018, 26(1): 200-207. (in Chinese)

【12】廖欣,郑欣,邹娟,等.基于神经网络集成模型的宫颈细胞病理计算机辅助诊断方法[J].液晶与显示,2018,33(4):347-356.
LIAO X, ZHENG X, ZOU J, et al. Computer-aided diagnosis of cervical cytopathology based on neural network ensemble model [J]. Chinese Journal of Liquid Crystals Displays, 2018, 33(4): 347-356. (in Chinese)

【13】耿庆田,赵浩宇,于繁华,等.基于改进HOG特征提取的车型识别算法[J].中国光学,2018,11(2):174-181.
GENG Q T, ZHAO H Y, YU F H, et al. Vehicle type recognition algorithm based on improved HOG feature [J]. Chinese Optics, 2018, 11(2): 174-181. (in Chinese)

【14】龙思源,张葆,宋策,等.基于改进的加速鲁棒特征的目标识别[J].中国光学,2017,10(6):719-725.
LONG S Y, ZHANG B, SONG C, et al. Object detection based on improved speeded-up robust features [J]. Chinese Optics, 2017, 10(6): 719-725. (in Chinese)

【15】李枫,赵岩,王世刚,等.结合SIFT算法的视频场景突变检测[J].中国光学,2016,9(1):74-80.
LI F, ZHAO Y, WANG S G, et al. Video scene mutation change detection combined with SIFT algorithm [J]. Chinese Optics, 2016, 9(1): 74-80. (in Chinese)

【16】朱姗姗,路交,刘鹤南,等.生物医学光子学在糖尿病视网膜病变中的应用进展[J].中国光学,2018,11(3):459-474.
ZHU S S, LU J, LIU H N, et al. Advances in application of biomedical photonics in diabetic retinopathy [J]. Chinese Optics, 2018, 11(3): 459-474. (in Chinese)

引用该论文

ZHENG Xin,TIAN Bo,LI Jing-jing. Intelligent recognition method of cervical cell cluster based on YOLO model[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(11): 965-971

郑欣,田博,李晶晶. 基于YOLO模型的宫颈细胞簇团智能识别方法[J]. 液晶与显示, 2018, 33(11): 965-971

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF