首页 > 论文 > 红外与毫米波学报 > 37卷 > 6期(pp:663-667)

具有长程传播和亚波长模式局域性的混合双楔形等离子体波导

Hybrid dual wedge plasmonic waveguide with long-range propagation and subwavelength mode confinement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一个混合双楔形等离子体波导, 该波导由两个楔形介质波导和一个菱形金属线组成.电介质楔形波导模式和长程表面等离子体模式的耦合使得该波导可以获得低损耗的传播和超深的亚波长的模式局域性.混合双楔形等离子体波导在得到一个532 μm的传播长度的同时可以得到一个2.9×10-3的超小的归一化模式面积或者在得到一个6.2×10-3的归一化模式面积的同时可以得到一个3028 μm的超长的传播距离.此外, 还研究了制作过程中可能存在的误差对该波导模式性质的影响.计算结果表明,该混合双楔形等离子体波导具有一定的制作容差性.

Abstract

A hybrid dual wedge plasmonic (HDWP) waveguide consisting of two dielectric wedges and a diamond metal wire was proposed. The coupling between dielectric wedge waveguide mode and long-rang surface plasmon polariton mode results in both low propagation loss and ultra-deep-subwavelength confinement. The HDWP waveguide achieves a normalized mode area of 2.9×10-3 with a moderate propagation length of 532 μm or a propagation length of 3028 μm with a normalized mode area of 6.2×10-3. The impacts of possible fabrication imperfections on the mode properties are studied. The results indicate that the HDWP waveguide is quite tolerant to fabrication errors.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.11972/j.issn.1001-9014.2018.06.004

基金项目:Supported by National Key Basic Research Program of China (2012CB922003), National Natural Science Foundation of China (61177053), and Anhui Provincial Natural Science Foundation (1508085SMA205)

收稿日期:2018-03-09

修改稿日期:2018-09-27

网络出版日期:--

作者单位    点击查看

岳文成:中国科学技术大学, 光学与光学工程系, 安徽 合肥 230026
姚培军:中国科学技术大学, 光学与光学工程系, 安徽 合肥 230026
陈小林:中国科学技术大学, 光学与光学工程系, 安徽 合肥 230026
陶润夏:中国科学技术大学, 光学与光学工程系, 安徽 合肥 230026

联系人作者:姚培军(yap@ustc.edu.cn)

备注:YUE Wen-Cheng(1989-), female, Dezhou, China, Ph.D. Research area focuses on the design and simulation of micro-/nano-optics devices. E-mail: wchengy@mail.ustc.edu.cn

【1】Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry [J]. Physics Today, 2008, 61(5):44-50.

【2】Wang J. A review of recent progress in plasmon-assisted nanophotonic devices [J]. Frontiers of Optoelectronics, 2014, 7(3): 320-337.

【3】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950): 824-830.

【4】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit [J]. Nature Photonics, 2010, 4(2): 83-91.

【5】Veronis G, Fan S. Guided subwavelength plasmonic mode supported by a slot in a thin metal film [J]. Optics Letters, 2005, 30(24): 3359-3361.

【6】Pile D F, Ogawa T, Gramotnev D K, et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide [J]. Applied Physics Letters, 2005, 87(26):261114-26114.

【7】Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration [J]. Optics Express, 2005, 13(17):6645-6650.

【8】Dionne J, Sweatlock L, Atwater H, et al. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization [J]. Physical Review B, 2006, 73(3):035407-035407.

【9】Zenin V A, Volkov V S, Han Z, et al. Dispersion of strongly confined channel plasmon polariton modes [J]. Journal of the Optical Society of America B, 2011, 28(7):1596-1602.

【10】Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J]. Nature, 2006, 440(7083):508-511.

【11】Moreno E, García-Vidal F J, Rodrigo S G, et al. Channel plasmon-polaritons: modal shape, dispersion, and losses [J]. Optics Letters, 2006, 31(23):3447-3449.

【12】Pile D F P, Ogawa T, Gramotnev D K, et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding [J]. Applied Physics Letters, 2005, 87(6):061106-061106.

【13】Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons [J]. Physical Review Letters, 2008, 100(2):023901-023901.

【14】Boltasseva A, Volkov V S, Nielsen R B, et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths [J]. Optics Express, 2008, 16(8):5252-5260.

【15】Ogawa T, Pile D F P, Okamoto T, et al. Numerical and experimental investigation of wedge tip radius effect on wedge plasmons [J]. Journal of Applied Physics, 2008, 104(3):033102-033102.

【16】Mu J, Chen L, Li X, et al. Hybrid nano ridge plasmonic polaritons waveguides [J]. Applied Physics Letters, 2013, 103(13):131107-131107.

【17】Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surface plasmon modes [J]. Journal of the Optical Society of America A, 2004, 21(12):2442-2446.

【18】Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation [J]. Nature Photonics, 2008, 2(8):496-500.

【19】Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J]. Optics Express, 2009, 17(19):16646-16653.

【20】Bian Y, Zheng Z, Zhao X, et al. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration [J]. Optics Express, 2009, 17(23):21320-21325.

【21】Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap [J]. Optics Express, 2010, 18(1):348-363.

【22】Bian Y, Zheng Z, Liu Y, et al. Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement [J]. Optics Express, 2010, 18(23):23756-23762.

【23】Chen L, Zhang T, Li X, et al. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film [J]. Optics Express, 2012, 20(18):20535-20544.

【24】Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide [J]. IEEE Photonics Journal, 2013, 5(2): 4800311-4800311.

【25】Bian Y, Zheng Z, Liu Y, et al. Hybrid wedge plasmon polariton waveguide with good fabricationerror-tolerance for ultra-deep-subwavelength mode confinement [J]. Optics Express, 2011, 19(23):22417-22422.

【26】Zhang Z, Wang J. Long-range hybrid wedge plasmonic waveguide [J]. Scientific Reports, 2014, 4(1):6870-6870.

【27】Yan M, Qiu M. Guided plasmon polariton at 2D metal corners [J]. Jornal of the Optical Society America B, 2007, 24(9):2333-2342.

【28】Johnson P B, Christy R W. Optical constants of the noble metals [J]. Physical Review B, 1972, 6(12):4370-4379.

【29】Buckley R, Berini P. Figures of merit for 2D surface plasmon waveguides and application to metal stripes [J]. Optics Express, 2007, 15(19):12174-12182.

【30】P. Berini. Figures of merit for surface plasmon waveguides [J]. Optics Express, 2006, 14(26):13030-13042.

【31】Oulton R F, Bartal G, Pile D F P, et al. Confinement and propagation characteristics of subwavelength plasmonic modes [J]. New Journal of Physics, 2008, 10(10):105018-105018.

【32】Berini P. Long-range surface plasmon polaritons [J]. Advances in Optics and Photonics, 2009, 1(3):484-588.

引用该论文

YUE Wen-Cheng,YAO Pei-Jun,CHEN Xiao-Lin,TAO Run-Xia. Hybrid dual wedge plasmonic waveguide with long-range propagation and subwavelength mode confinement[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 663-667

岳文成,姚培军,陈小林,陶润夏. 具有长程传播和亚波长模式局域性的混合双楔形等离子体波导[J]. 红外与毫米波学报, 2018, 37(6): 663-667

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF