首页 > 论文 > 红外与毫米波学报 > 37卷 > 6期(pp:668-672)

基于肖特基电流输运模型和扫描分布电阻显微术的窄量子阱载流子浓度表征

2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

目前对于纳米尺度半导体材料的局域电导与对应载流子浓度关系的描述主要以参数拟合为主。其关系模型主要依赖人工拟合参数, 例如理想因子。所以无法从测得局域电导分布来推出载流子浓度分布。为此, 提出了一种获取量子阱中载流子浓度的模型。通过小于10 nm分辨的截面扫描分布电阻显微术, 测得了GaAs/AlGaAs量子阱(1 1 0)截面的局域电导分布。基于实验设置, 提出了只含有掺杂浓度参量的实验描述模型。通过模型, 由测得的量子阱(掺杂浓度从1016/cm3到1018/cm3)局域电导分布, 推导出了其载流子分布。相对误差在30%之内。

Abstract

Current studies on the relationship between carrier concentration in nano-scale semiconductor structure and its local conductance is mainly on parameters fitting. For above connection, existing models rely on artificial fitting parameters such as ideal factor. For above reason, derivation of carrier concentration though measured local conductance can not be done. In this work, we present a scheme to obtain the carrier concentration in narrow quantum wells (QWs). Cross-sectional scanning spreading resistance microscopy (SSRM) provides unparalleled spatial resolution (<10 nm, Capable of characterizing single QW layer) in electrical characterization. High-resolution local conductance has been measured by SSRM on molecular beam epitaxy-grown GaAs/AlGaAs QWs cleaved surface (110). Based on our experimental set-up, a model which describes conductance by the only argument, i.e. carrier concentration has been built. Using the model, our implementation derived carrier concentration from SSRM measured local conductance in GaAs/AlGaAs QWs (doping level: 1016/cm3-1018/cm3). Relative errors of the results are within 30%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O469

DOI:10.11972/j.issn.1001-9014.2018.06.005

基金项目:Supported by China Aerospace Science and Technology Corporation Research and Development Innovation Project (YJT0410), the Fund of Shanghai Science and Technology Foundation (16ZR1447400), the National Key Research and Development Program of China (2016YFB0501303)

收稿日期:2018-03-21

修改稿日期:2018-08-24

网络出版日期:--

作者单位    点击查看

黄文超:兰州空间技术物理研究所 真空技术与物理国家重点实验室, 甘肃 兰州 730000
王晓芳:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
陈效双:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
薛玉雄:兰州空间技术物理研究所 真空技术与物理国家重点实验室, 甘肃 兰州 730000
杨生胜:兰州空间技术物理研究所 真空技术与物理国家重点实验室, 甘肃 兰州 730000

联系人作者:王晓芳(wxiaof66@mail.sitp.ac.cn;薛玉雄|cheng20050322@163.com)

备注:HUANG Wen-Chao(1985-), male, Lanzhou, China, Ph.D. Research area focus on semiconductor physics. E-mail: huangwcnk@163.com

【1】Xia H, Lu Z Y, Li T X, et al. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping[J]. Acs Nano, 2012, 6(7):6005-6013.

【2】Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes[J]. Appl. Phys. Lett., 1995, 67(13):1868-1870.

【3】Choquette K D, Klem J F, Fischer A J, et al. Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm[J]. Electron. Lett., 2000, 36(16):1388-1390.

【4】Nakada N, Nakaji M, Ishikawa H, et al. Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire[J]. Appl. Phys. Lett., 2000, 76(14):1804-1806.

【5】Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264:553-556.

【6】Williams B S, Callebaut H, Kumar S, et al. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation[J]. Appl. Phys. Lett., 2003, 82(7):1015-1017.

【7】Shafai C, Thomson D J, Normandin M S, et al. Delineation of semiconductor doping by scanning resistance microscopy[J]. Appl. Phys. Lett., 1994, 64(3):342-344.

【8】Lu R P, Kavanagh K L, Dixon-Warren St J, et al. Calibrated scanning spreading resistance microscopy profiling of carriers in III-V structures[J]. J. Vac. Sci. Technol. B, 2001, 19(4):1662-1670.

【9】Lu R P, Kavanagh K L, Dixon-Warren St J, et al. Scanning spreading resistance microscopy current transport studies on doped III–V semiconductors [J]. J. Vac. Sci. Technol. B, 2002, 20(4):1682-1689.

【10】Hudait M K, Krupanidhi S B. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J]. Physica B, 2001, 307(1):125-137.

【11】Sze S M. Physics of semiconductor devices[M]. Second Edition, SuZhou, Suzhou University Press, 2003, 543.

【12】Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-Ga N from current-voltage measurements[J]. Appl. Phys. Lett., 2005, 86(12):1417.

【13】Roul B, Rajpalke M K, Bhat T N, et al. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films[J]. Appl. Phys. Lett., 2011, 99(16):760.

【14】Kenney C, Saraswat K C, Taylor B, et al.Thermionic Field Emission Explanation for Nonlinear Richardson Plots[J]. IEEE Transactions on Electron Devices, 2011, 58(8):2423-2429.

【15】Cheung S K, Cheung N W. Schottky barrier degradation of the W/GaAs system after high‐temperature annealing[J]. J. Appl. Phys., 1986, 60(9):3235-3242.

【16】Suvorova N A, Shchularev A V, Usov I O, et al. XPS study of dependence of Au/6H-SiC Schottky barrier height on carrier concentration[J]. Semiconducting and Insulating Materials, Proceedings of the 10 th Conference, 1998, 291-294.

【17】Pan S H, Shen H, Hang Z, et al. Photoreflectance study of narrow-well strained-layer InGaAs/GaAs coupled multiple-quantum-well structures[J]. Phys. Rev. B, 1988, 38:3375.

【18】Liu J, Mandal K C, Koley G. Investigation of nanoscale electronic properties of CdZnTe crystals by scanning spreading resistance microscopy[J]. Semicond. Sci. Technol., 2009, 24(4):045012.

【19】Padovani F A, Stratton R. Field and thermionic-field emission in Schottky barriers[J]. Solid-State Electron, 1966, 9(7):695-707.

【20】Hudait M K, Krupanidhi S B. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures[J]. Physica B, 2001, 307(1):125-137.

【21】Pipinys P, Lapeika V. Analysis of reverse-Bias leakage current mechanisms in metal/GaN Schottky diodes[J]. Advances in Condensed Matter Physics, 2010, 2010(1687-8108):211-232.

【22】Crofton J, Sriram S. Reverse leakage current calculations for SiC Schottky contacts[J]. IEEE Transactions on Electron Devices, 1966, 43(12):2305-2307.

【23】Stratton R. Theory of field emission from semiconductors[J]. Phys. Rev., 1932, 125(1):67-82.

【24】Stratton R. Volt-current characteristics for tunneling through insulating films[J]. J. Phys. Chem. Solids, 1962, 23(9):1177-1190.

【25】Suman D, Shen S, Kenneth P R, et al. Simulation and design of InAlAs/InGaAs pnp heterojunction bipolar transistors[J]. IEEE Transactions on Electron Devices, 1998,45(8):1634-1643.

【26】Tan S O, Tecimer H U, iek O, et al. Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities[J]. J. Mater. Sci-Mater. El., 2016, 27(8):1-8.

【27】Sze S M, Crowell C R, Kahng D. Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers[J]. J. Appl. Phys., 1964, 35(8):2534-2536.

引用该论文

HUANG Wen-Chao,WANG Xiao-Fang,CHEN Xiao-Shuang,XUE Yu-Xiong,YANG Sheng-Sheng. 2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 668-672

黄文超,王晓芳,陈效双,薛玉雄,杨生胜. 基于肖特基电流输运模型和扫描分布电阻显微术的窄量子阱载流子浓度表征[J]. 红外与毫米波学报, 2018, 37(6): 668-672

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF