首页 > 论文 > Photonics Research > 6卷 > 12期(pp:1102-1106)

Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

When a dielectric meta-atom is placed into a subwavelength metallic aperture, 20-fold enhanced electromagnetic transmission through the aperture is realized at the meta-atom’s resonant frequency. Additionally, when the incident electromagnetic power increases, thermal energy gathered by the meta-atom, which is converted from electromagnetic losses, can cause the meta-atom’s temperature to increase. Because of the high temperature coefficient of the meta-atom’s resonant frequency, this temperature increase causes a blueshift in the transmission peak. Therefore, this frequency-dependent enhanced electromagnetic transmission even produces a nonlinear effect at low incident powers. Over an incident power range from 0 to 20 dBm, measured and simulated spectra near the meta-atom’s resonant frequency show distinctly nonlinear transmission.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.001102

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61675103, 51862027, 51532004); Natural Science Foundation of Inner Mongolia10.13039/501100004763 (2018JQ03); State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University (THU)10.13039/501100004147 (KF201702).

收稿日期:2018-07-31

录用日期:2018-10-06

网络出版日期:2018-10-08

作者单位    点击查看

Yunsheng Guo:Department of Applied Physics, Inner Mongolia University of Science & Technology, Baotou 014010, China
Saiyu Liu:Department of Applied Physics, Inner Mongolia University of Science & Technology, Baotou 014010, China
Ke Bi:State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Ming Lei:State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Ji Zhou:State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

联系人作者:Yunsheng Guo(gys03018@imut.edu.cn)

【1】T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391 , 667–669 (1998).

【2】N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2 , 564–570 (2008).

【3】J. A. Matteo, and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13 , 636–647 (2005).

【4】F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90 , 213901 (2003).

【5】W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92 , 107401 (2004).

【6】R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92 , 037401 (2004).

【7】K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92 , 183901 (2004).

【8】F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82 , 729–787 (2010).

【9】K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102 , 013904 (2009).

【10】A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105 , 126804 (2010).

【11】K. B. Alici, and E. Ozbay, “Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole,” Phys. Status Solidi 4 , 286–288 (2010).

【12】Z. C. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96 , 233901 (2006).

【13】R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89 , 183901 (2002).

【14】L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97 , 011905 (2010).

【15】N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8 , 889–898 (2014).

【16】R. Tsu, and M. A. Fiddy, “Generalization of the effects of high Q for metamaterials,” Photon. Res. 1 , 77–87 (2013).

【17】K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3 , 514–519 (2016).

【18】D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305 , 788–792 (2004).

【19】V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1 , 41–48 (2007).

【20】Y. M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5 , 5753 (2014).

【21】K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12 , 143–149 (2018).

【22】X. Y. Liu, K. B. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25 , 191–201 (2017).

【23】K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15 , 5369–5374 (2015).

【24】Y. S. Guo, and J. Zhou, “Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators,” Sci. Rep. 5 , 8144 (2015).

【25】Y. S. Guo, and J. Zhou, “Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators,” Opt. Express 22 , 27136–27143 (2014).

【26】K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, and M. Lei, “Magnetically tunable broadband transmission through a single small aperture,” Sci. Rep. 5 , 12489 (2015).

【27】Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, and J. Zhou, “Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator,” Appl. Phys. Lett. 108 , 051906 (2016).

【28】Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104 , 123902 (2014).

【29】J. C. Prangsma, D. van Oosten, R. J. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12 , 013005 (2010).

【30】N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15 , 263–271 (2016).

【31】H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469 , 385–388 (2011).

【32】M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313 , 502–504 (2006).

【33】M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15 , 5238–5247 (2007).

【34】Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79 , 235109 (2009).

【35】C. Ciraci, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85 , 201403 (2012).

【36】Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, and K. Bi, “Mie-resonance-coupled total broadband transmission through a single subwavelength aperture,” Appl. Phys. Lett. 104 , 204103 (2014).

【37】W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-?″ metals,” Appl. Phys. Lett. 110 , 101101 (2017).

引用该论文

Yunsheng Guo, Saiyu Liu, Ke Bi, Ming Lei, and Ji Zhou, "Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture," Photonics Research 6(12), 1102-1106 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF