Photonics Research, 2018, 6 (12): 12001116, Published Online: Dec. 3, 2018   

High efficiency generation of tunable ellipse perfect vector beams

Author Affiliations
1 Jiangsu Key Laboratory for Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
2 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
3 e-mail: changchenliang@njnu.edu.cn
4 e-mail: jpding@nju.edu.cn
Abstract
We present a highly efficient method of generating and shaping ellipse perfect vector beams (EPVBs) with a prescribed ellipse intensity profile and continuously variant linear polarization state. The scheme is based on the coaxial superposition of two orthogonally polarized ellipse laser beams of controllable phase vortex serving as the base vector components. The phase-only computer-generated hologram is specifically designed by means of a modified iteration algorithm involving a complex amplitude constraint, which is able to generate an EPVB with high diffraction efficiency in the vector optical field generator. We experimentally demonstrate that the efficiency of generating the EPVB has a notable improvement from 1.83% in the conventional complex amplitude modulation based technique to 11.1% in our method. We also discuss and demonstrate the simultaneous shaping of multiple EPVBs with independent tunable ellipticity and polarization vortex in both transversal (2D) and axial (3D) focusing structures, proving potentials in a variety of polarization-mediated applications such as trapping and transportation of particles in more complex geometric circumstances.

Lin Li, Chenliang Chang, Caojin Yuan, Shaotong Feng, Shouping Nie, Zhi-Cheng Ren, Hui-Tian Wang, Jianping Ding. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12): 12001116.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!