Photonics Research, 2018, 6 (12): 12001124, Published Online: Dec. 3, 2018   

Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber Download: 624次

Author Affiliations
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
2 The Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
3 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, China
4 Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, USA
Abstract
We propose and demonstrate a tapered hollow annular core fiber (HACF) coupler for excitation of whispering-gallery modes (WGMs) of an embedded microsphere resonator. The coupler is simply fabricated by fusion splicing of a segment of HACF with the single-mode fiber (SMF), and then improved by tapering the splicing joint to reduce the cone-apex angle. Therefore, the coupling efficiency from the SMF to the HACF is enhanced to excite various WGMs via evanescent field coupling. Normal positive, negative symmetrical Lorentzian and asymmetric Fano line shapes can be obtained by varying the resonator size and location. Another interesting phenomenon is observed that a higher Q-factor mode in a lower Q-factor mode has a contrast as high as 58. Temperature sensing with good stability is also demonstrated. This embedded WGM microsphere resonator in the tapered HACF is expected to promote environmental adaptability in practical applications due to its simplicity and robustness.

Jiawei Wang, Xiaobei Zhang, Ming Yan, Lei Yang, Fengyu Hou, Wen Sun, Xiaotong Zhang, Libo Yuan, Hai Xiao, Tingyun Wang. Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber[J]. Photonics Research, 2018, 6(12): 12001124.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!