首页 > 论文 > Photonics Research > 6卷 > 12期(pp:1151-1157)

Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We employed a metallic wire grating loaded with graphene and operating in total internal reflection (TIR) geometry to realize deep and broadband THz modulation. The non-resonant field enhancement effect of the evanescent wave in TIR geometry and in the subwavelength wire grating was combined to demonstrate a ~77% modulation depth (MD) in the frequency range of 0.2–1.4 THz. This MD, achieved electrically with a SiO2/Si gated graphene device, was 4.5 times higher than that of the device without a metal grating in transmission geometry. By optimizing the parameters of the metallic wire grating, the required sheet conductivity of graphene for deep modulation was lowered to 0.87 mS. This work has potential applications in THz communication and real-time THz imaging.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.001151

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61575125, 61671308, 61805148); Guangdong Foundation of Outstanding Young Teachers in Higher Education Institutions (YQ2015141); Guangdong Special Support Program of Top-notch Young Professionals (2015TQ01R453); Hong Kong Research Grants Council (14201415); Hong Kong Innovation and Technology Fund (ITS/371/16); UK Engineering and Physical Sciences Research Council (EPSRC)10.13039/501100000266 (EP/N022769/1); CUHK Global Travel Fund.

收稿日期:2018-08-20

录用日期:2018-10-09

网络出版日期:2018-10-24

作者单位    点击查看

Yiwen Sun:National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
Riccardo Degl’Innocenti:Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
David A. Ritchie:Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
Harvey E. Beere:Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
Long Xiao:Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UKDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Michael Ruggiero:Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
J. Axel Zeitler:Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
Rayko I. Stantchev:Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
Danni Chen:Key Laboratory of Ministry of Education for Optoelectronic Devices and Systems, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Zhengchun Peng:Key Laboratory of Ministry of Education for Optoelectronic Devices and Systems, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Emma MacPherson:Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, ChinaDepartment of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
Xudong Liu:National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China

联系人作者:Xudong Liu(xdliu@szu.edu.cn)

【1】W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70 , 1325–1379 (2007).

【2】C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: a review of investigations to date,” Quant. Imaging Med. Surg. 2 , 33–45 (2012).

【3】C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. J?rdens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49 , E48–E57 (2010).

【4】F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104 , 253603 (2010).

【5】B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340 , 844–847 (2013).

【6】R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2 , e1600190 (2016).

【7】R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47 , 2999–3012 (2012).

【8】I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41 , 3261–3264 (2016).

【9】X. Liu, E. P. J. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, “Exploiting total internal reflection geometry for efficient optical modulation of terahertz light,” APL Photon. 1 , 076103 (2016).

【10】R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, and Y. Ren, “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas,” ACS Photon. 3 , 464–470 (2016).

【11】M. Chen, F. Fan, L. Yang, X. Wang, and S. Chang, “Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal,” IEEE J. Quantum Electron. 53 , 8500106 (2017).

【12】F. Fan, S. Chen, W. H. Gu, X. H. Wang, and S. J. Chang, “Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays,” Appl. Phys. Lett. 105 , 151110 (2014).

【13】T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105 , 093707 (2009).

【14】B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3 , 780 (2012).

【15】D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, and H. E. Beere, “Graphene based plasmonic terahertz amplitude modulator operating above 100?MHz,” Appl. Phys. Lett. 108 , 171101 (2016).

【16】G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photon. 2 , 1559–1566 (2015).

【17】W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, and D. M. Mittleman, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14 , 1242–1248 (2014).

【18】B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, and D. Jena, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12 , 4518–4522 (2012).

【19】Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27 , 1874–1879 (2015).

【20】S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15 , 372–377 (2014).

【21】Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5 , 041027 (2015).

【22】A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, and A. V. Lavrinenko, “Non-resonant terahertz field enhancement in periodically arranged nanoslits,” J. Appl. Phys. 112 , 074318 (2012).

【23】X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5 , 1600697 (2017).

【24】X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, “Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion,” Photon. Res. 5 , 299–304 (2017).

【25】X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, and E. Pickwell-MacPherson, “Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry,” APL Photon. 3 , 051604 (2018).

【26】S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60 , 257–261 (1992).

【27】K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306 , 666–669 (2004).

【28】D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21 , 12507–12518 (2013).

【29】C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8 , 605–609 (2014).

引用该论文

Yiwen Sun, Riccardo Degl’Innocenti, David A. Ritchie, Harvey E. Beere, Long Xiao, Michael Ruggiero, J. Axel Zeitler, Rayko I. Stantchev, Danni Chen, Zhengchun Peng, Emma MacPherson, and Xudong Liu, "Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry," Photonics Research 6(12), 1151-1157 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF