首页 > 论文 > Photonics Research > 6卷 > 12期(pp:1171-1176)

Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The coherent light-matter interaction has drawn an enormous amount of attention for its fundamental importance in the cavity quantum-electrodynamics (C-QED) field and great potential in quantum information applications. Here, we design a hybrid C-QED system consisting of a quantum dot (QD) driven by two-tone fields implanted in a photonic crystal (PhC) cavity coupled to an auxiliary cavity with a single-mode waveguide and investigate the hybrid system operating in the weak, intermediate, and strong coupling regimes of the light-matter interaction via comparing the QD-photon interaction with the dipole decay rate and the cavity field decay rate. The results indicate that the auxiliary cavity plays a key role in the hybrid system, which affords a quantum channel to influence the absorption of the probe field. By controlling the coupling strength between the auxiliary cavity and the PhC cavity, the phenomenon of the Mollow triplet can appear in the intermediate coupling regime, and even in the weak coupling regime. We further study the strong coupling interaction manifested by vacuum Rabi splitting in the absorption with manipulating the cavity-cavity coupling under different parameter regimes. This study provides a promising platform for understanding the dynamics of QD-C-QED systems and paving the way toward on-chip QD-based nanophotonic devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.001171

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11647001, 11804004); Natural Science Foundation of Anhui Province10.13039/501100003995 (1708085QA11).

收稿日期:2018-09-14

录用日期:2018-10-08

网络出版日期:2018-10-27

作者单位    点击查看

Hua-Jun Chen:School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China (chenphysics@126.com)

联系人作者:联系作者

【1】H. Mabuchi, and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298 , 1372–1377 (2002).

【2】K. J. Vahala, “Optical microcavities,” Nature 424 , 839–846 (2003).

【3】C. Monroe, “Quantum information processing with atoms and photons,” Nature 416 , 238–246 (2002).

【4】C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448 , 889–893 (2007).

【5】J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3 , 687–695 (2009).

【6】Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: photon transportation benefitting from Rayleigh scattering,” Phys. Rev. A 84 , 011805 (2011).

【7】A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. A 85 , 041801 (2012).

【8】J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432 , 197–200 (2004).

【9】E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95 , 067401 (2005).

【10】T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432 , 200–203 (2004).

【11】M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6 , 279–283 (2010).

【12】S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1 , 449–458 (2007).

【13】W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96 , 117401 (2006).

【14】R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100 , 240404 (2008).

【15】K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445 , 896–899 (2007).

【16】T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6 , 605–609 (2012).

【17】R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108 , 227402 (2012).

【18】A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6 , 93–96 (2012).

【19】H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7 , 373–377 (2013).

【20】A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308 , 1158–1161 (2005).

【21】D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450 , 857–861 (2007).

【22】A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4 , 859–863 (2008).

【23】Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112 , 213602 (2014).

【24】E. del Valle, and F. P. Laussy, “Mollow triplet under incoherent pumping,” Phys. Rev. Lett. 105 , 233601 (2010).

【25】X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317 , 929–932 (2007).

【26】Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83 , 019902 (2011).

【27】H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi splitting in a semiconductor circuit QED system,” Phys. Rev. Lett. 110 , 066802 (2013).

【28】J. Q. Liao, Q. Q. Wu, and F. Nori, “Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system,” Phys. Rev. A 89 , 014302 (2014).

【29】B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10 , 394–398 (2014).

【30】H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113 , 053604 (2014).

【31】A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418 , 612–614 (2002).

【32】R. W. Boyd, Nonlinear Optics (Academic, 2008).

【33】D. F. Walls, and G. J. Milburn, Quantum Optics (Springer, 1994), p.?245.

【34】L. M. Duan, and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92 , 127902 (2004).

【35】L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8 , 524–529 (2014).

【36】E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69 , 37–38 (1946).

【37】J. J. Li, and K. D. Zhu, “A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity,” Nanotechnology 22 , 055202 (2011).

【38】Y. C. Yu, J. F. Liu, X. L. Zhuo, G. Chen, C. J. Jin, and X. H. Wang, “Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions,” Opt. Express 21 , 23486–23497 (2013).

【39】S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

引用该论文

Hua-Jun Chen, "Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity," Photonics Research 6(12), 1171-1176 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF