首页 > 论文 > Photonics Research > 7卷 > 1期(pp:8-13)

Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Graphene microfibers are burgeoning modulators with great potential in all-optical communication. One of the critical issues that remains to be understood is the dynamic mechanism of light–graphene interaction. Here, we propose a power dependent modulation by using 980 nm pump light and 1064 nm signal light via graphene microfiber, and the results show a strong transmission reduction and frequency blue shift with the increase of pump power. The experimental observation is attributed to a stimulated Brillouin scattering process induced by the pump light. Power and frequency variations are a result of energy transition of the scattered phonon in the fiber. This work reveals the nonlinear effect process in the light–graphene interaction and provides a new method for power and frequency control with graphene all-optical modulation.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.7.000008

所属栏目:Fiber Optics and Optical Communications

基金项目:International Science and Technology Cooperation Project (2014-10780); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11874299).

收稿日期:2018-08-03

录用日期:2018-10-11

网络出版日期:2018-10-30

作者单位    点击查看

Jiwen Zhu:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Xuemei Cheng:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, Chinae-mail: xmcheng@nwu.edu.cn
Yali Liu:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Ruiduo Wang:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Man Jiang:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Diao Li:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Baole Lu:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
Zhaoyu Ren:State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, Chinae-mail: rzy@nwu.edu.cn

联系人作者:联系作者

【1】D. J. Richardson, “Silicon photonics: beating the electronics bottleneck,” Nat. Photonics 3 , 562–564 (2009).

【2】S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3 , 541–544 (2016).

【3】Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15 , 4393–4400 (2015).

【4】W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, and H. Wang, “Ultrafast all-optical graphene modulator,” Nano Lett. 14 , 955–959 (2014).

【5】J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4 , e360 (2015).

【6】A. M. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308 , 672–674 (2005).

【7】D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1 , 402–406 (2007).

【8】A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. B?ggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryh?nen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. L?fwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7 , 4598–4810 (2015).

【9】Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10 , 227–238 (2016).

【10】V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431 , 1081–1084 (2004).

【11】X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2 , 185–189 (2008).

【12】C. Koos, D. L. Elder, D. Korn, H. Yu, J. Leuthold, L. R. Dalton, L. Alloatti, M. Woessner, M. Lauermann, and P. C. Schindler, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4 , e255 (2015).

【13】M. Liu, X. B. Yin, A. E. Ulin, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474 , 64–67 (2011).

【14】S. Y. Luo, Y. N. Wang, T. Xin, and Z. M. Wang, “Graphene-based optical modulators,” Nano. Res. Lett. 10 , 199 (2015).

【15】T. C. Wang, and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5 , 629–639 (2017).

【16】Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photon. Technol. Lett. 28 , 383–386 (2016).

【17】S. R. Bongu, P. B. Bisht, R. C. K. Namboodiri, P. Nayak, S. Ramaprabhu, T. J. Kelly, C. Fallon, and J. T. Costello, “Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping,” J. Appl. Phys. 116 , 073101 (2014).

【18】C. Y. Zhao, D. Mao, J. L. Zhao, L. Han, L. Fang, X. T. Gan, and Y. D. Wang, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2 , 468–471 (2015).

【19】J. Kang, B. L. Lu, X. Y. Qi, X. Q. Feng, H. W. Chen, M. Jiang, Y. Wang, P. Fu, and J. T. Bai, “An efficient single-frequency Yb-doped All-fiber MOPA laser at 1064.3??nm,” Chin. Phys. Lett. 33 , 54–57 (2016).

【20】M. Qi, Z. Y. Ren, Y. Jiao, Y. X. Zhou, X. L. Xu, W. L. Li, J. Y. Li, X. L. Zheng, and J. T. Bai, “Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene,” J. Phys. Chem. C 117 , 14348–14353 (2013).

【21】R. W. Boyd, Nonlinear Optics , 3rd ed. (Academic, 2009).

【22】G. P. Agrawal, Nonlinear Fiber Optics (World Book, 2005).

【23】A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2 , 1–59 (2010).

【24】B. Zhou, C. Shu, L. Wang, and S. He, “Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor,” Opt. Lett. 36 , 427–429 (2011).

【25】M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82 , 2954–2956 (2003).

【26】J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16 , 053014 (2014).

【27】R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: nonlinear electromechanical coupling in solid dielectrics,” J. Phys. Chem. B 101 , 10141–10150 (1997).

【28】A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20 , 1425–1432 (2002).

【29】P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2 , 388–392 (2006).

【30】R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Fiber Technol. 19 , 8285–8290 (2011).

【31】E. Lichtman, and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64 , 544–548 (1987).

引用该论文

Jiwen Zhu, Xuemei Cheng, Yali Liu, Ruiduo Wang, Man Jiang, Diao Li, Baole Lu, and Zhaoyu Ren, "Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber," Photonics Research 7(1), 8-13 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF