首页 > 论文 > Photonics Research > 7卷 > 1期(pp:14-18)

Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We propose and demonstrate a widely tunable passively Q-switched Ho3+/Pr3+-codoped ZrF4-BaF2-LaF3-AlF3-NaF fiber laser operating in the 2.8 μm mid-infrared (MIR) waveband based on a single-walled carbon nanotube (SWCNT) saturable absorber (SA). The SWCNTs have diameters ranging from 1.4 to 1.7 nm. The modulation depth and saturation intensity of the SWCNT SA measured at 2850 nm are 16.5% and 1.66 MW/cm2, respectively. Stable Q-switched pulses with the shortest pulse duration of 1.46 μs and the maximum pulse energy of 0.43 μJ are achieved at a launched pump power of 445.6 mW. The combined use of a broadband SWCNT SA and a plane ruled grating ensures a broad continuously tuning range of 55.0 nm from 2837.6 to 2892.6 nm. The output powers, emission spectra, repetition rates, and pulse durations at different tuning wavelengths are also characterized and analyzed. Our results indicate that SWCNTs can be excellent broadband SAs in the 3 μm MIR region. To the author’s knowledge, this is the first demonstration of a widely tunable carbon-nanotube-enabled passively Q-switched fiber laser operating in the 2.8 μm MIR waveband.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.7.000014

所属栏目:Lasers and Laser Optics

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61875033, 61505024, 61435003, 61421002, 61705147, 61605219, 61775031); Chengdu Science and Technology Huimin Project (2016-HM01-00265-SF, 2016-HM01-00269-SF); Fundamental Research Funds for the Central Universities (YJ201723).

收稿日期:2018-08-28

录用日期:2018-11-01

网络出版日期:2018-11-02

作者单位    点击查看

Yanjia Lü:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Chen Wei:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Chinae-mail: cwei@uestc.edu.cn
Han Zhang:College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China
Zhe Kang:Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130012, Chinae-mail: kangz@cho.ac.cn
Guanshi Qin:State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
Yong Liu:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

联系人作者:联系作者

【1】P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37 , 101–114 (2002).

【2】A. Godard, “Infrared (2–12??μm) solid-state laser sources: a review,” C. R. Phys. 8 , 1100–1128 (2007).

【3】M. Pollaun, and S. D. Jackson, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

【4】K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17 , 12627–12640 (2009).

【5】M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36 , 4122–4124 (2011).

【6】C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34??nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25 , 19170–19178 (2017).

【7】U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2 , 435–453 (1996).

【8】D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22 , 621–623 (1997).

【9】A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36 , 1–2 (2006).

【10】J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3??μm,” Opt. Express 23 , 22362–22370 (2015).

【11】C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8??μm,” Opt. Lett. 37 , 3849–3851 (2012).

【12】C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29 , 881–884 (2017).

【13】C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78??μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38 , 3233–3236 (2013).

【14】G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8??μm,” IEEE Photon. Technol. Lett. 28 , 7–10 (2015).

【15】G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3??μm,” Opt. Mater. Express 3 , 1365–1377 (2013).

【16】R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320 , 1308 (2008).

【17】F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper?NTh1A.5.

【18】Z. Q. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06??μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21 , 29516–29522 (2013).

【19】Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22 , 11508–11515 (2014).

【20】M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. Lee, “A femtosecond pulse fiber laser at 1935??nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22 , 7865–7874 (2014).

【21】J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40 , 3659–3662 (2015).

【22】Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8??μm,” Opt. Express 23 , 24713–24718 (2015).

【23】Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41 , 56–59 (2016).

【24】C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3??μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13 , 105108 (2016).

【25】R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22 , 31113–31122 (2014).

【26】Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22 , 25258–25266 (2014).

【27】A. Martinez, and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7 , 842–845 (2013).

【28】F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3 , 738–742 (2008).

【29】Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200??nm tuning range,” Sci. Rep. 7 , 45109 (2017).

【30】Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20 , 17797–17805 (2012).

【31】M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6 , 1–30 (2017).

【32】S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).

【33】D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1??W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47 , 985–986 (2011).

引用该论文

Yanjia Lü, Chen Wei, Han Zhang, Zhe Kang, Guanshi Qin, and Yong Liu, "Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber," Photonics Research 7(1), 14-18 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF