首页 > 论文 > 红外与激光工程 > 47卷 > 11期(pp:1106006--1)

梯度下降VAD方法的单多普勒激光雷达风场探测技术

Technique of wind field detection based on single Doppler lidar with gradient descent VAD method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

速度方位显示(Velocity-Azimuth Display, VAD)方法作为一种基于单部激光雷达和同一高度风场均匀的假设前提来反演风场的通用方法已经在业界得到广泛应用, 但其对激光雷达扫描方位角的范围和径向个数的严格要求在一定程度上影响了激光雷达的测量效率。基于此, 提出了一种基于梯度下降算法的VAD风场反演方法。使用梯度下降算法代替目前VAD中的傅里叶级数展开求解的方法。在分析了算法收敛性影响因素的基础上, 确定了算法迭代步长和迭代次数, 从而改善了算法的收敛性, 提高了运算速度。与标准风杯风速计(IEC 61400-12-1)的同步对比实验结果显示: 该方法在激光雷达扫描范围降低到60°和扫描径向个数降低到7个的情况下, 10 min平均的风速、风向相关系数达到0.99, 风速标准偏差、偏差分别为0.52 m/s和0.02 m/s, 风向的标准偏差和偏差分别为5.1°和3.6°。结果证明了该方法在提高激光雷达测量效率的同时仍能保证其准确性, 具有更强的适用性, 可有效提升系统对于动态大气风场监测能力。

Abstract

The VAD (Velocity-Azimuth Display) method, which is used to retrieve wind field based on one wind lidar system and the assumption of uniform wind in the same level, has been widely used in the industry. To guarantee the accuracy, the azimuthal range of lidar and number of scanning should meet some requirements, which affects measurement efficiency. Based on this, a new wind retrieval method of VAD used for Doppler lidar based on gradient descent algorithm was developed. The gradient descent algorithm was used to replace present Fourier series expansion for the solution of VAD. The convergence and calculation speed were improved by analyzing the factors that affect algorithm convergence and determining the iteration step length and the number of iterations, respectively. In order to demonstrate this modified VAD method, the wind data of coherent Doppler lidar was compared with standard wind cup anemometer (IEC 61400-12-1). The correlation coefficients of the 10 min- averaged wind speed and direction were up to 0.99 in the case that the azimuth range and the number of radial velocity were 60° and 7, with wind speed standard deviation and bias of 0.52 m/s and 0.02 m/s, and with wind direction standard deviation and bias of 5.1° and 3.6°. The results prove that this modified VAD method could improve Doppler measurement efficiency and applicability, and guarantee its accuracy at the same time, which improves the system capability for the monitoring of dynamic complex wind field.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP701

DOI:10.3788/irla201847.1106006

所属栏目:激光技术及应用

基金项目:国家自然科学基金(41375016, 41471309); 国家重点研发计划(2016YFC1400904); 国家高技术研究发展计划(2014AA09A511)

收稿日期:2018-06-10

修改稿日期:2018-07-28

网络出版日期:--

作者单位    点击查看

冯长中:中国海洋大学 信息科学与工程学院, 山东 青岛 266100
吴松华:中国海洋大学 信息科学与工程学院, 山东 青岛 266100
黄海广:中国海洋大学 信息科学与工程学院, 山东 青岛 266100
王贵宁:中国海洋大学 信息科学与工程学院, 山东 青岛 266100

联系人作者:冯长中(changzhong606@163.com)

备注:冯长中(1987-), 男, 博士生, 主要从事激光雷达风场反演算法方面的研究。

【1】Hu Yang, Zhu Heyuan. 1.55 μm all-fiber coherent Doppler lidar for wind measurement [J]. Infrared and Laser Engineering, 2016, 45(S1): S130001. (in Chinese)
胡杨, 朱鹤元. 1.55 μm全光纤相干多普勒激光测风雷达 [J]. 红外与激光工程, 2016, 45(S1): S130001.

【2】Shi Wei, Fang Qiang, Li Jinhui. High-performance fiber lasers for LIDARs[J]. Infrared and Laser Engineering, 2017, 46(8): 0802001. (in Chinese)
史伟, 房强, 李锦辉. 激光雷达用高性能光纤激光器 [J]. 红外与激光工程, 2017, 46(8): 0802001.

【3】Rahm S, Smalikho I. Aircraft wake vortex measurement with airborne coherent dopplerlidar[J]. Journal of Aircraft, 2008, 45(4): 1148-1155.

【4】K?觟pp F, Rahm S, Smalikho I. Characterization of aircraft wake vortices by 2-μm pulsed Dopplerlidar[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 194-206.

【5】Smalikho I N, Banakh V A. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar[J]. Optics Letters, 2015, 40(14): 3408-3411.

【6】Wang Dongxiang, Song Xiaoquan, Feng Changzhong. Coherent Doppler lidar observations of marine atmospheric boundary layer height in the bohai and yellow sea[J]. Acta Optica Sinica, 2015, 35(S1): S101001. (in Chinese)
王东祥, 宋小全, 冯长中. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(S1): S101001.

【7】Krishnamurthy R, Choukulkar A, Calhoun R, et al. Coherent Doppler lidar for wind farm characterization[J]. Wind Energy, 2013, 16(2): 189-206.

【8】Wu S, Liu B, Liu J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): 19.

【9】Smalikho I, Banakh V, Pichugina Y, et al. Lidar investigation of atmosphere effect on a wind turbine wake[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(11): 2554-2570.

【10】Iungo G V, Wu Y T, Porté-Agel F. Field measurements of wind turbine wakes with lidars[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 274-287.

【11】Aitken M L, Lundquist J K. Utility-scale wind turbine wake characterization using nacelle-based long-range scanning lidar[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(7): 1529-1539.

【12】Aitken M L, Banta R M, Pichugina Y L, et al. Quantifying wind turbine wake characteristics from scanning remote sensor data[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(4): 765-787.

【13】Kameyama S, Ando T, Asaka K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 2007, 46(11): 1953-1962.

【14】Lhemitte R, Atlas D. Precipitation motion by pulse Doppler[C]//Proc Ninth Weather Radar Conference, 1961: 218-223.

【15】Browning K, Wexler R. The determination of kinematic properties of a wind field using Doppler radar[J]. Journal of Applied Meteorology, 1968, 7(1): 105-113.

【16】Srivastava R, Matejka T, Lorello T. Doppler radar study of the trailing anvil region associated with a squall line[J]. Journal of the Atmospheric Sciences, 1986, 43(4): 356-377.

【17】Holleman I. Quality control and verification of weather radar wind profiles[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(10): 1541-1550.

【18】Lu Dachun Jiang Nianchong. Application of VAD related products in near-forecast[J]. Journal of Applied Meteorological Science, 2003, 14(S1): 156-160. (in Chinese)
陆大春, 蒋年冲. VAD有关产品在临近预报中的应用[J]. 应用气象学报, 2003, 14(S1): 156-160.

【19】Shao Aimei, Qiao Xiaoshi, Qiu Congjian. Criteria of quality control for VAD winds[J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(5): 57-62. (in Chinese)
邵爱梅, 乔小湜, 邱崇践. VAD技术反演水平风廓线的质量控制标准[J]. 兰州大学学报(自科版), 2009, 45(5): 57-62.

【20】Huang Min, Wang Yulan, Wang Na, et al. Algorithm and simulation of downward velocity azimuth display of airborne wind lidars[J]. Laser Technology, 2012, 36(1): 22-25. (in Chinese)
黄敏, 王玉兰, 王娜, 等. 机载测风激光雷达下视VAD反演及算法仿真[J]. 激光技术, 2012, 36(1): 22-25.

【21】Huang Min. Research on nonlinear VAD method of continuous coherent wind LIDAR [D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese)
黄敏. 连续相干激光测风雷达非线性VAD方法研究 [D]. 成都: 成都理工大学, 2012.

【22】Li Hang. Statistical Learning Method [M]. Beijng: Tsinghua University Press, 2012. (in Chinese)
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.

【23】Wu S, Yin J, Liu B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]//SPIE Asia Pacific Remote Sensing, 2014, 9262: 92620H.

【24】Wu S, Liu B, Liu J, Zhai X, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): A762-A780.

引用该论文

Feng Changzhong,Wu Songhua,Huang Haiguang,Wang Guining. Technique of wind field detection based on single Doppler lidar with gradient descent VAD method[J]. Infrared and Laser Engineering, 2018, 47(11): 1106006

冯长中,吴松华,黄海广,王贵宁. 梯度下降VAD方法的单多普勒激光雷达风场探测技术[J]. 红外与激光工程, 2018, 47(11): 1106006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF