首页 > 论文 > 红外与激光工程 > 47卷 > 12期(pp:1230001--1)

联合时频分析在相干测风激光雷达中的应用

Application of joint time-frequency analysis in coherent Doppler wind lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

相干测风激光雷达具有风场测量精度高、高时空分辨率、探测范围广等突出优点, 已广泛应用于风切变探测、飞机尾流探测、风力发电和大气湍流探测等方面。如何从大气回波信号中提取微弱的多普勒频移信息是激光雷达信号处理的难点。基于大气分层模型仿真生成相干激光雷达大气回波信号, 对模拟回波信号应用不同的时频分布进行时频分析。随后对比了时频分析的效果, 自适应最优核时频分布具有运算量小, 交叉项抑制效果好, 时频聚集度高等优点。最后, 使用1.5 μm相干多普勒激光雷达于2017年3月份在安徽合肥进行实地观测, 将自适应最优核时频分布应用于实测数据, 与传统的快速傅里叶方法对比风速反演结果。结果表明: 自适应最优核时频分布能更好地反映出风速细节信息, 3 km内距离分辨率为1.2 m, 3 km后经平滑保持了对远场弱信号风速估计的连续性, 时间分辨率为1 s时其最远水平探测范围约在6 km。

Abstract

With high accuracy, high spatial-temporal resolution, large scale coverage, coherent Doppler lidar has been widely applied in the detection of wind shear, aircraft vortex, wind power generation, atmosphere turbulence and so on. For lidar signal processing, the key issue is how to extract weak Doppler frequency shift in the weak backscatter signal. Based on the atmospheric slices model, the simulated echo signal of coherent Doppler lidar was processed by different time-frequency methods. Simulation results show that the adaptive optimal-kernel time frequency representation outperforms the others, having the advantages of lower computation cost, suppressing cross terms efficiently and higher resolution in both time and frequency domains. Then the adaptive optimal-kernel time frequency representation was applied to the field experiment data derived from a 1.5 μm Coherent Doppler lidar in Hefei, Anhui Province in March, 2017. The retrieved wind velocity results were compared with that derived from the fast Fourier transform algorithm. Experimental results show that the range resolution is 1.2 meter within 3 kilometers, and maintains the continuity of wind speed retrieved form weak signal using a 50-points window in the far field over 3 kilometers. Furthermore it can track the wind details better and enhance the detection range to 6 kilometers as the temporal resolution is set to 1 second.

中国激光微信矩阵
补充资料

中图分类号:TN958.98

DOI:10.3788/irla201847.1230001

所属栏目:激光雷达技术

收稿日期:2018-08-10

修改稿日期:2018-09-28

网络出版日期:--

作者单位    点击查看

刘燕平:中国科学技术大学 地球与空间科学学院, 安徽 合肥 230026
王 冲:中国科学技术大学 地球与空间科学学院, 安徽 合肥 230026
吴云斌:中国科学技术大学 地球与空间科学学院, 安徽 合肥 230026
上官明佳:中国科学技术大学 地球与空间科学学院, 安徽 合肥 230026
夏海云:中国科学技术大学 地球与空间科学学院, 安徽 合肥 230026

联系人作者:刘燕平(yanping@mail.ustc.edu.cn)

备注:刘燕平(1992-), 女, 硕士生, 主要从事激光雷达方面的研究。

【1】Shangguan M, Xia H, Wang C, et al. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer [J]. Optics Express, 2016, 24(17): 19322-19336.

【2】Yang F, He Y, Shang J, et al. Development of an all-fiber heterodyne lidar for range and velocity measurements[J]. Chinese Optics Letters, 2010, 8(7): 713-716.

【3】Liu J, Zhu X, Diao W, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles[C]//EPJ Web of Conferences, EDP Sciences, 2016, 119: 10002.

【4】Shi Chenglong, Liu Jiqiao, Bi Decang, et al. Errors analysis of dioxide carbon concentrations measurement by airborne lidar[J]. Infrared and Laser Engineering, 2016, 45(5): 0530001. (in Chinese)
史成龙, 刘继桥, 毕德仓, 等. 机载激光雷达测量二氧化碳浓度误差分析[J]. 红外与激光工程, 2016,45(5): 0530001.

【5】Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micropulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)
鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学 精密工程, 2017,25(7): 1697-1704.

【6】Liu Zhiqing, Li Pengcheng, Chen Xiwei, et al. Classification of airbone Lidar point cloud data based on information vector machine[J]. Optics and Precision Engineering, 2016, 24(1): 210-219. (in Chinese)
刘志青, 李鹏程, 陈小卫, 等. 基于信息向量机的机载激光雷达点云数据分类[J]. 光学 精密工程, 2016, 24(1): 210-219.

【7】Qu Yi. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学, 2013, 6(6): 834-840.

【8】Li Li, Wang Canzhao, Xie Yafeng, et al. Wind field inversion technique for scanning wind lidar[J]. Chinese Optics, 2013, 6(2): 251-258. (in Chinese)
李丽, 王灿召, 谢亚峰, 等. 扫描式测风激光雷达的风场反演[J]. 中国光学, 2013, 6(2): 251-258.

【9】Wang C, Xia H, Shangguan M, et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663-20674.

【10】Liu J, Zhu X, Diao W, et al. All-fiber airborne coherent doppler lidar to measure wind profiles[C]//EPJ Web of Conferences. EDP Sciences, 2016, 119: 10002.

【11】Zhai X, Wu S, Liu B. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529.

【12】Deng Pan, Zhang Tianshu, Chen Wei, et al. Estimating noise scale factor and SNR of atmospheric lidar[J]. Infrared and Laser Engineering, 2016, 45(S1): S13003. (in Chinese)
邓潘, 张天舒, 陈卫, 等. 大气探测激光雷达噪声比例因子及信噪比的估算[J]. 红外与激光工程, 2016, 45(S1): S13003.

【13】Bai Xue, Guo Pan, Chen Siying, et al. Simulation in the time domain and time-frequency analysis for coherent doppler wind Lidar[J]. Chinese Journal of Lasers, 2015, 42(1): 0114003.
白雪, 郭磐, 陈思颖, 等. 相干多普勒测风激光雷达时域信号仿真及时频分析[J]. 中国激光, 2015, 42(1): 0114003.

【14】Salamitou P, Dabas A, Flamant P H. Simulation in the time domain for heterodyne coherent laser radar [J]. Applied Optics, 1995, 34(3): 499-506.

【15】Baraniuk R G, Jones D L, Baraniuk R G, et al. A signal-dependent time-frequency representation: Optimal kernel design[J]. IEEE Transactions on Signal Processing, 1993, 41(4): 1589-1602.

引用该论文

Liu Yanping,Wang Chong,Wu Yunbin,Shangguan Mingjia,Xia Haiyun. Application of joint time-frequency analysis in coherent Doppler wind lidar[J]. Infrared and Laser Engineering, 2018, 47(12): 1230001

刘燕平,王 冲,吴云斌,上官明佳,夏海云. 联合时频分析在相干测风激光雷达中的应用[J]. 红外与激光工程, 2018, 47(12): 1230001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF