首页 > 论文 > 红外 > 39卷 > 11期(pp:1-6)

基于计算机视觉的人体异常行为识别综述

Review of Human Abnormal Action Recognition Based on Computer Vision

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

人体行为识别是计算机视觉和模式识别领域的研究热点之一。作为人体行为识别的一个重要分支, 人体异常行为检测近年来也不断得到学界及工业界的重视。人体行为识别研究从早期的依赖人体形状特征发展到基于梯度设计的特征检测, 再到当前随着神经网络的新发展, 深度学习开始广泛应用于行为识别。同时由于红外波段具有适应弱光照环境、可全天候检测等优点, 基于该波段的人体行为识别研究开始兴起, 它也必将成为人体行为识别领域中一个新的研究热点。

Abstract

Human action recognition is one of the hotspots in the field of computer vision and pattern recognition. As an important branch of human action recognition, abnormal human action detection has arrested attention of academic and business communities constantly. The research on human action recognition has developed from the research based on human shape features to the research based on gradient design. At present, with the new development of neural network, deep learning has been widely used in action recognition. Because infrared wavebands have advantages of dealing with weak light environment and 24-hour monitoring, they have been applied to the research on human action recognition. This will become a new research hotspot in the field of human action recognition.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP312

DOI:10.3969/j.issn.1672-8785.2018.11.001

所属栏目:综述

收稿日期:2018-09-10

修改稿日期:--

网络出版日期:--

作者单位    点击查看

向玉开:中国科学院上海技术物理研究所, 上海 200083中国科学院大学, 北京 100049
孙胜利:中国科学院上海技术物理研究所, 上海 200083
雷林建:中国科学院上海技术物理研究所, 上海 200083上海科技大学, 上海 201210
刘会凯:中国科学院上海技术物理研究所, 上海 200083中国科学院大学, 北京 100049
张悦:中国科学院上海技术物理研究所, 上海 200083中国科学院大学, 北京 100049

联系人作者:向玉开(yk_xiang@126.com)

备注:向玉开(1994-), 男, 湖南湘西人, 硕士研究生, 主要研究方向为图像处理及计算机视觉。

【1】Gorelick L, Blank M, Shechtman E, et al. Actions as Space-time Shapes [C]. Beijing: 10th IEEE International Conference on Computer Vision, 2005.

【2】Schuldt C, Laptev I, Caputo B. Recognizing Human Actions: A Local SVM Approach [C]. Cambridge: 17th International Conference on Pattern Recognition, 2004.

【3】Soomro K, Zamir A R. Action Recognition in Realistic Sports Videos [M]. Lausanne: Springer, 2014.

【4】Marszalek M, Laptev I, Schmid C. Actions in Context [C]. Miami: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.

【5】Auvinet E, Rougier C, Meunier J, et al. Multiple Cameras Fall Dataset [R]. DIRO: Technical Report 1350, 2010.

【6】Gao C, Du Y, Liu J, et al. InfAR Dataset: Infrared Action Recognition at Different Times [J]. Neurocomputing, 2016, 212: 36-47.

【7】Fujiyoshi H, Lipton A J. Real-time Human Motion Analysis by Image Skeletonization [C]. Breckenridge: Fourth IEEE Workshop on Applications of Computer Vision, 1998.

【8】Bobick A F, Davis J W. The Recognition of Human Movement Using Temporal Templates [M]. Washington, DC: IEEE Computer Society, 2001.

【9】Hsiao P C, Chen C S, Chang L W. Human Action Recognition Using Temporal-state Shape Contexts [C]. Monaco: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.

【10】Zhang H B, Li S Z, Guo F, et al. Real-time Human Action Recognition Based on Shape Combined with Motion Feature [C]. Atlanta: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010.

【11】Zhang Z, Liu J. Recognizing Human Action and Identity Based on Affine-SIFT [J]. Electrical & Electronics Engineering, 2012, 237(6): 216-219.

【12】Ji S, Xu W, Yang M, et al. 3D Convolutional Neural Networks for Human Action Recognition [C]. Washington, DC: Ninth International Conference on Machine Learning and Applications, 2010.

【13】Gammulle H, Denman S, Sridharan S, et al. Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition [C]. Hawaii: IEEE Winter Conference on Applications of Computer Vision, 2017.

【14】Chua J L, Chang Y C, Lim W K. A Simple Vision-based Fall Detection Technique for Indoor Video Surveillance [J]. Signal Image & Video Processing, 2015, 9(3): 623-633.

【15】Rougier C, Meunier J, St-Arnaud A, et al. Fall Detection from Human Shape and Motion History Using Video Surveillance [C]. Niagara Falls: International Conference on Advanced Information Networking and Applications, 2007.

【16】Wang S, Chen L, Zhou Z, et al. Human Fall Detection in Surveillance Video Based on PCANet [J]. Multimedia Tools & Applications, 2016, 75(19): 11603-11613.

【17】Núez-Marcos A, Azkune G, Arganda-Carreras I. Vision-Based Fall Detection with Convolutional Neural Networks [J]. Wireless Communications & Mobile Computing, 2017, 2017(1): 1-16.

【18】Han J, Bhanu B. Human Activity Recognition in Thermal Infrared Imagery [C]. San Diego: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

【19】Gao C, Du Y, Liu J, et al. InfAR Dataset: Infrared Action Recognition at Different Times [J]. Neurocomputing, 2016, 212: 36-47.

【20】Jiang Z, Rozgic V, Adali S. Learning Spatiotemporal Features for Infrared Action Recognition with 3D Convolutional Neural Networks [C]. Honolulu: 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.

【21】Liu Y, Lu Z, Li J, et al. Global Temporal Representation Based CNNs for Infrared Action Recognition [J]. IEEE Signal Processing Letters, 2018, 25(6): 848-852.

【22】Mastorakis G, Makris D. Fall Detection System Using Kinect''s Infrared Sensor [J]. Journal of Real-Time Image Processing, 2014, 9(4): 635-646.

引用该论文

XIANG Yu-kai,SUN Sheng-li,LEI Lin-jian,LIU Hui-kai,ZHANG Yue. Review of Human Abnormal Action Recognition Based on Computer Vision[J]. INFRARED, 2018, 39(11): 1-6

向玉开,孙胜利,雷林建,刘会凯,张悦. 基于计算机视觉的人体异常行为识别综述[J]. 红外, 2018, 39(11): 1-6

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF