首页 > 论文 > 半导体光电 > 39卷 > 6期(pp:853-857)

无人机空中OFDM光通信链路性能研究

Research on The Performance of UAV Aerial OFDM Optical Communication Link

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于无人机空中光正交频分复用(OFDM)通信模型链路的误码性能理论和仿真研究, 综合考虑服从对数正态分布的大气湍流模型和服从瑞利分布的指向误差模型对通信系统的影响, 采用高斯-厄米特积分方法得出了通信系统链路误码率的闭合表达式。在此基础上, 仿真分析了发射端光束发散角、符号速率、子载波数和接收孔径大小与系统误码率的关系。仿真结果表明, 在弱湍流条件下, 发射端激光存在可使链路误码性能达到最优的光束发射角, 湍流强度的改变对最优光束发散角的影响不大。光OFDM系统能够满足无人机间通信速率为吉比特级的光通信要求, 并且通信时接收端的孔径尺寸不宜增大, 该结果对通信链路的优化设计有一定的参考意义。

Abstract

Theoretical and simulation studies were performed on the link error performance of UAV aerial optical orthogonal frequency division multiplexing communication model. Considering the influence on the communication system of atmospheric turbulence model obeying lognormal distribution and directional error model following Rayleigh distribution, Gaussian-Hermitian integral method was used to calculate the closed expression of link error rate of communication system at the same time. Based on this, the relationship between the beam divergence angle, the symbol rate, the number of subcarriers, the size of the receiving aperture and the system error rate was analyzed with simulations. The results show that under weak turbulence conditions, the transmitter laser has a beam emission angle which can optimize the link error performance, the relationship between the number of subcarriers and the bit error rate was greatly affected by the transmitted optical power, and the aperture size of receiving end of the communication should not be increased.

广告组1.1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.1

DOI:10.16818/j.issn1001-5868.2018.06.020

所属栏目:光电系统

基金项目:国家自然科学基金项目(61571461, 61401502); 陕西省自然科学基金项目(2016JQ6008)

收稿日期:2018-07-04

修改稿日期:--

网络出版日期:--

作者单位    点击查看

陈 阳:空军工程大学 信息与导航学院, 西安 710077
王 翔:空军工程大学 信息与导航学院, 西安 710077
赵尚弘:空军工程大学 信息与导航学院, 西安 710077
林 涛:空军工程大学 信息与导航学院, 西安 710077
胡大鹏:空军工程大学 信息与导航学院, 西安 710077
王星宇:空军工程大学 信息与导航学院, 西安 710077

联系人作者:赵尚弘(zhaoshangh@aliyun.com)

备注:陈 阳(1990-), 男, 硕士, 主要从事空间激光通信方面的研究。

【1】闫鲁生, 王 峰, 吴 畏, 等. 无人机激光通信载荷发展现状与关键技术研究[J]. 激光与光电子学进展, 2016(8): 34-42.
Yan Lusheng, Wang Feng, Wu Wei, et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser & Optoelectronics Progress, 2016(8): 34-42.

【2】Hatziefremidis A, Zarganis K, Leligou H, et al. Bit error rate analysis along a slanted path link between UAVs and ground stations[C]// IEEE Inter. Conf. on Transparent Optical Networks, 2013: 1-4.

【3】Youssefelganimi T. Performance comparison between OOK, PPM and PAM modulation schemes for free space optical (FSO) communication systems: analytical study[J]. Inter. J. of Computer Applications, 2013, 79(11): 22-27.

【4】柯熙政, 雷思琛, 李蓓蕾. 无线光正交频分复用系统的实验研究[J]. 中国激光, 2015, 42(12): 144-152.
Ke Xizheng, Lei Sichen, Li Beilei. Experimental study on free space optical orthogonal frequency division multiplexing system[J]. Chinese J. of Lasers, 2015, 42(12): 144-152.

【5】Sudheer V V, Mandloi A. Enhanced coherent optical OFDM FSO link using diversity for different weather conditions[C]// IEEE Inter. Conf. on Recent Trends in Electronics, Information & Communication Technol., 2017: 1221-1225.

【6】Farid A A, Hranilovic S. Outage capacity optimization for free-space optical links with pointing errors[J]. J. of Lightwave Technol., 2007, 25(7): 1702-1710.

【7】Boluda-Ruiz R, Garcia-Zambrana A, Castillo-Vazquez C, et al. Amplify-and-forward strategy using MRC reception over FSO channels with pointing errors[J]. IEEE/OSA J. of Optical Commun. & Networking, 2018, 10(5): 545-552.

【8】Phillips R L. Laser Beam Propagation Through Random Media (2nd Edi.)[M]. England: SPIE Press, 2005.

【9】Vahidi V, Saberinia E. Orthogonal frequency division multiplexing and channel models for payload communications of unmanned aerial systems[C]// IEEE Inter. Conf. on Unmanned Aircraft Systems, 2016: 1156-1161.

【10】Vahidi V, Saberinia E. Channel estimation for wideband doubly selective UAS channels[C]// IEEE Inter. Conf. on Unmanned Aircraft Systems, 2017.

【11】曾 飞, 高世杰, 伞晓刚, 等. 机载激光通信系统发展现状与趋势[J]. 中国光学, 2016, 9(1): 65-73.
Zeng Fei, Gao Shijie, San Xiaogang, et al. Development status and trend of airborne laser communication terminals[J]. Chinese Opt., 2016, 9(1): 65-73.

【12】宋延嵩, 常 帅, 佟首峰, 等. 航空激光通信系统的特性分析及机载激光通信系统实验[J]. 中国激光, 2016(12): 209-220.
Song Yansong, Chang Shuai, Tong Shoufeng, et al. Feature analysis of aeronautical laser communication experiment[J]. Chinese J. of Lasers, 2016(12): 209-220.

【13】Fu H, Wang P, Liu T, et al. Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging[J]. Appl. Opt., 2017, 56(23): 6432-6439.

【14】柯熙政, 亢 烨, 刘 娟. FSO-OFDM系统中峰均比控制方法的实验研究[J]. 红外与激光工程, 2017, 46(6): 173-179.
Ke Xizheng, Kang Ye, Liu Juan. Experimental research on PAPR reduction algorithms in FSO-OFDM system[J]. Infrared and Laser Engin., 2017, 46(6): 173-179.

【15】Kumar P, Srivastava A. Receiver sensitivity improvement of OFDM-FSO link using SRM device[C]// IEEE Inter. Conf. on Adv. Networks and Telecommun. Systems, 2015: 1-6.

【16】Gappmair W, Hranilovic S, Leitgeb E. OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions[J]. IEEE Commun. Lett., 2011, 15(8): 875-877.

【17】Yang F, Cheng J, Tsiftsis T. Free-space optical communications with generalized pointing errors[C]// 2013 IEEE Inter. Conf. on Commun., 2013: 3943-3947.

引用该论文

CHEN Yang,WANG Xiang,ZHAO Shanghong,LIN Tao,HU Dapeng,WANG Xingyu. Research on The Performance of UAV Aerial OFDM Optical Communication Link[J]. Semiconductor Optoelectronics, 2018, 39(6): 853-857

陈 阳,王 翔,赵尚弘,林 涛,胡大鹏,王星宇. 无人机空中OFDM光通信链路性能研究[J]. 半导体光电, 2018, 39(6): 853-857

被引情况

【1】丁举鹏,易芝玲,王劲涛,李亚平,张志军,解鹏,郭学让,陈习锋. 无人机机载光无线通信研究进展. 激光与光电子学进展, 2020, 57(23): 230003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF