首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126005--1)

基于傅里叶分析的超表面多维光场调控(特邀综述)

Multi-Dimensional Manipulation of Optical Field by Metasurfaces Based on Fourier Analysis (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为一种新型的二维人工微结构, 超表面在亚波长尺度上对光场的调控具有灵活性与多元性, 这使得多维度、全方位的光场调控成为可能, 近年来引起了广泛关注。基于傅里叶理论对胞间弱耦合超表面的设计进行理论分析, 并提出收敛性条件, 以弥补超表面非连续相位设计中亚波长条件不充分的不足; 进一步将超表面相位调控与光场中的偏振、振幅、频率等物理性质相结合, 综述了超表面在多维光场调控中的发展与应用。超表面多维光场调控不仅增大了光场调控的自由度, 还推动了集成化光学设备的发展。

Abstract

Metasurfaces, as two-dimensional artificial nanostructures, have draw a lot of attention in recent years due to the remarkable ability for flexible optical field modulation. Full-control, and all-dimensional optical field manipulation can be realized by designing metasurface. In this review, we utilize Fourier analysis to theoretically study the designed strategy of metasurface consisting of weakly coupling unit cells. The stable conditions based on Fourier analysis is proposed to mimic continuous phase profile using discontinuous phase profile, which compensates the inadequacy of subwavelength conditions. Furthermore, by combining the phase manipulation by metasurfaces with optical characteristics of polarization, amplitude, and frequency, the evolution and applications of metasurfaces in multi-dimensional manipulation of optical field are briefly reviewed, respectively. As a result, the multi-dimensional manipulation of optical field by metasurfaces not only increases the freedom degree of light-field control, but also promotes the development of integrated optical equipment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201939.0126005

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家重点研发计划(2016YFA0301102, 2017YFA0303800)、国家自然科学基金(11574163, 11774186)、天津市自然科学基金(16JCQNJC01700)

收稿日期:2018-08-22

修改稿日期:2018-10-10

网络出版日期:2018-10-16

作者单位    点击查看

杨渤:南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071
程化:南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071山西大学极端光学协同创新中心, 山西 太原 030006
陈树琪:南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071山西大学极端光学协同创新中心, 山西 太原 030006
田建国:南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:陈树琪(schen@nankai.edu.cn)

【1】Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

【2】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

【3】Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379.

【4】Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

【5】Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600.

【6】Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

【7】Dolling G, Enkrich C, Wegener M, et al. Simultaneous negative phase and group velocity of light in a metamaterial[J]. Science, 2006, 312(5775): 892-894.

【8】Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.

【9】Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

【10】Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

【11】Liu Y C, Ling X H, Yi X N, et al. Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking[J]. Optics Letters, 2015, 40(5): 756-759.

【12】Huang L L, Chen X Z, Bai B F, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.

【13】Kapitanova P V, Ginzburg P, Rodríguez-Fortuo F J, et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes[J]. Nature Communications, 2014, 5: 3226.

【14】Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

【15】Yu N F, Genevet P, Aieta F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423.

【16】Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.

【17】Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8(12): 889-898.

【18】Wang J, Du J. Plasmonic and dielectric metasurfaces: design, fabrication and applications[J]. Applied Sciences, 2016, 6(9): 239.

【19】Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064.

【20】Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

【21】Su V C, Chu C H, Sun G, et al. Advances in optical metasurfaces: fabrication and applications[J]. Optics Express, 2018, 26(10): 13148-13182.

【22】Wang Z J, Cheng F, Winsor T, et al. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications[J]. Nanotechnology, 2016, 27(41): 412001.

【23】Caldwell J D, Vurgaftman I, Tischler J G, et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics[J]. Nature Nanotechnology, 2016, 11(1): 9-15.

【24】Liu Y C, Ke Y G, Luo H L, et al. Photonic spin Hall effect in metasurfaces: a brief review[J]. Nanophotonics, 2017, 6(1): 51-70.

【25】Krasnok A, Makarov S, Petrov M, et al. Towards all-dielectric metamaterials and nanophotonics[J]. Proceedings of SPIE, 2015, 9502: 950203.

【26】Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

【27】Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1-72.

【28】Ra’di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations[J]. Physical Review Applied, 2015, 3(3): 037001.

【29】Cheng H, Liu Z C, Chen S Q, et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 2015, 27(36): 5410-5421.

【30】Xu W D, Xie L J, Ying Y B. Mechanisms and applications of terahertz metamaterial sensing: a review[J]. Nanoscale, 2017, 9(37): 13864-13878.

【31】Kamali S M, Arbabi E, Arbabi A, et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 2018, 7(6): 1041-1068.

【32】Chen M, Kim M, Wong A M H, et al. Huygens’ metasurfaces from microwaves to optics: a review[J]. Nanophotonics, 2018, 7(6): 1207-1231.

【33】Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 16-22.

【34】Liu W W, Li Z C, Cheng H, et al. Momentum analysis for metasurfaces[J]. Physical Review Applied, 2017, 8(1): 014012.

【35】Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 2018, 6(13): 1800104.

【36】Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.

【37】Shaltout A, Liu J J, Kildishev A, et al. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2015, 2(10): 860-863.

【38】Ding F, Pors A, Chen Y T, et al. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces[J]. ACS Photonics, 2017, 4(4): 943-949.

【39】Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence[J]. Light: Science & Applications, 2018, 7(4): 17178.

【40】Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.

【41】Chong K E, Wang L, Staude I, et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms[J]. ACS Photonics, 2016, 3(4): 514-519.

【42】Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200.

【43】Wang S, Wang X K, Kan Q, et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 2015, 23(20): 26434-26441.

【44】Xu H X, Wang G M, Cai T, et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 2016, 24(24): 27836-27848.

【45】Li J X, Chen S Q, Yang H F, et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces[J]. Advanced Functional Materials, 2015, 25(5): 704-710.

【46】Schonbrun E, Seo K, Crozier K B. Reconfigurable imaging systems using elliptical nanowires[J]. Nano Letters, 2011, 11(10): 4299-4303.

【47】Vo S, Fattal D, Sorin W V, et al. Sub-wavelength grating lenses with a twist[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1375-1378.

【48】Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Physical Review Letters, 2010, 104(25): 253902.

【49】Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2): 023902.

【50】Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333.

【51】Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

【52】Liu W W, Chen S Q, Li Z C, et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 2015, 40(13): 3185-3188.

【53】Liu Z C, Li Z C, Liu Z, et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 2017, 4(8): 2061-2069.

【54】Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505.

【55】Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

【56】Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234.

【57】Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

【58】Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.

【59】Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.

【60】Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682.

【61】Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 2018, 30(23): 1706368.

【62】Li Z C, Liu W W, Cheng H, et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Scientific Reports, 2015, 5: 18106.

【63】Liu Z C, Chen S Q, Li J X, et al. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces[J]. Optics Letters, 2014, 39(23): 6763-6766.

【64】Li Z Y, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Letters, 2015, 15(3): 1615-1621.

【65】Ling X H, Zhou X X, Shu W X, et al. Realization of tunable photonic spin Hall effect by tailoring the Pancharatnam-Berry phase[J]. Scientific Reports, 2014, 4: 5557.

【66】Luo W J, Sun S L, Xu H X, et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 2017, 7(4): 044033.

【67】Cheng H, Chen S Q, Yu P, et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Advanced Optical Materials, 2015, 3(12): 1744-1749.

【68】Wang C, Liu W W, Li Z C, et al. Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(3): 1701047.

【69】Yu P, Chen S Q, Li J X, et al. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces[J]. Optics Letters, 2015, 40(14): 3229-3232.

【70】Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. PhysicalReview Letters, 2013, 110(20): 203903.

【71】Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943.

【72】Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

【73】Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

【74】Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3522-3530.

【75】Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029.

【76】Zhou J X, Liu Y C, Ke Y G, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.

【77】Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 2017, 6(8): e17027.

【78】Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.

【79】Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172.

【80】Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156.

【81】Huang C, Sun B, Pan W B, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Scientific Reports, 2017, 7: 42302.

【82】Zhang L, Wu R Y, Bai G D, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205.

【83】Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076.

【84】Pfeiffer C, Grbic A. Cascaded metasurfaces for complete phase and polarization control[J]. Applied Physics Letters, 2013, 102(23): 231116.

【85】Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563.

【86】Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2016, 17(1): 407-413.

【87】Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

【88】Devlin R C, Ambrosio A, Wintz D, et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces[J]. Optics Express, 2017, 25(1): 377-393.

【89】Ma X L, Pu M B, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.

【90】Wen D D, Yue F Y, Ardron M, et al. Multifunctional metasurface lens for imaging and Fourier transform[J]. Scientific Reports, 2016, 6: 27628.

【91】Park H, Yun H, Choi C, et al. Huygens’ optical vector wave field synthesis via in-plane electric dipole metasurface[J]. Optics Express, 2018, 26(8): 10649-10660.

【92】Guo Q H, Schlickriede C, Wang D Y, et al. Manipulation of vector beam polarization with geometric metasurfaces[J]. Optics Express, 2017, 25(13): 14300-14307.

【93】Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

【94】Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

【95】Yoon G, Lee D, Nam K T, et al. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility[J]. ACS Photonics, 2017, 5(5): 1643-1647.

【96】Lin J, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274.

【97】Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036.

【98】Kim M, Wong A M H, Eleftheriades G V. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients[J]. Physical Review X, 2014, 4(4): 041042.

【99】Liu Z C, Li Z C, Liu Z, et al. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces[J]. Advanced Functional Materials, 2015, 25(34): 5428-5434.

【100】Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382-9389.

【101】Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

【102】Xie X, Li X, Pu M B, et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Advanced Functional Materials, 2018, 28(14): 1706673.

【103】Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

【104】Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(2): 024401.

【105】Wang Q, Zhang X Q, Xu Y H, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 2016, 6: 32867.

【106】Wang B, Dong F L, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.

【107】Colburn S, Zhan A L, Majumdar A. Metasurface optics for full-color computational imaging[J]. Science Advances, 2018, 4(2): eaar2114.

【108】Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197.

【109】Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245.

【110】Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

【111】Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces[J]. ACS Photonics, 2016, 3(1): 124-129.

【112】Song E Y, Lee G Y, Park H, et al. Compact generation of Airy beams with C-aperture metasurface[J]. Advanced Optical Materials, 2017, 5(10): 1601028.

【113】Fan Q B, Wang D P, Huo P C, et al. Autofocusing Airy beams generated by all-dielectric metasurface for visible light[J]. Optics Express, 2017, 25(8): 9285-9294.

【114】Ding J, An S S, Zheng B W, et al. Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths[J]. Advanced Optical Materials, 2017, 5(10): 1700079.

【115】Li Z, Cheng H, Liu Z C, et al. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces[J]. Advanced Optical Materials, 2016, 4(8): 1230-1235.

【116】Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

【117】Li L, Li T, Wang S M, et al. Plasmonic Airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12): 126804.

【118】Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2017, 2(5): 17010.

【119】Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. MaterialsToday, 2018, 21(1): 8-21.

【120】Gu B B, Zhao C J, Baev A, et al. Molecular nonlinear optics: recent advances and applications[J]. Advances in Optics and Photonics, 2016, 8(2): 328-369.

【121】Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69.

【122】Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 2015, 9(2): 195-213.

【123】Nookala N, Lee J, Tymchenko M, et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response[J]. Optica, 2016, 3(3): 283-288.

【124】Liu S, Sinclair M B, Saravi S, et al. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces[J]. Nano Letters, 2016, 16(9): 5426-5432.

【125】Lee J, Nookala N, Gomez-Diaz J S, et al. Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response[J]. Advanced Optical Materials, 2016, 4(5): 664-670.

【126】Chen P Y, Argyropoulos C, D’Aguanno G, et al. Enhanced second-harmonic generation by metasurface nanomixer and nanocavity[J]. ACS Photonics, 2015, 2(8): 1000-1006.

【127】Kruk S, Weismann M, Bykov A Y, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces[J]. ACS Photonics, 2015, 2(8): 1007-1012.

【128】Li Z, Liu W W, Li Z C, et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation[J]. Optics Letters, 2017, 42(16): 3117-3120.

【129】Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 2015, 14(6): 607-612.

【130】Shorokhov A S, Melik-Gaykazyan E V, Smirnova D A, et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances[J]. Nano Letters, 2016, 16(8): 4857-4861.

【131】Shcherbakov M R, Shorokhov A S, Neshev D N, et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers[J]. ACS Photonics, 2015, 2(5): 578-582.

【132】Grinblat G, Li Y, Nielsen M P, et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode[J]. Nano Letters, 2016, 16(7): 4635-4640.

【133】Sartorello G, Olivier N, Zhang J J, et al. Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces[J]. ACS Photonics, 2016, 3(8): 1517-1522.

【134】Jin B Y, Argyropoulos C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports, 2016, 6: 28746.

【135】Poddubny A N, Iorsh I V, Sukhorukov A A. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials[J]. Physical Review Letters, 2016, 117(12): 123901.

【136】Rao S M, Lyons A, Roger T, et al. Geometries for the coherent control of four-wave mixing in graphene multilayers[J]. Scientific Reports, 2015, 5: 15399.

【137】Grinblat G, Li Y, Nielsen M P, et al. Degenerate four-wave mixing in a multiresonant germanium nanodisk[J]. ACS Photonics, 2017, 4(9): 2144-2149.

【138】Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367.

【139】Ye W M, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

【140】Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7: 12533.

【141】Schlickriede C, Waterman N, Reineke B, et al. Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 2018, 30(8): 1703843.

【142】Chen S M, Li G X, Cheah K W, et al. Controlling the phase of optical nonlinearity with plasmonic metasurfaces[J]. Nanophotonics, 2018, 7(6): 1013-1024.

【143】Keren-Zur S, Avayu O, Michaeli L, et al. Nonlinear beam shaping with plasmonic metasurfaces[J]. ACS Photonics, 2016, 3(1): 117-123.

【144】Shapira A, Shiloh R, Juwiler I, et al. Two-dimensional nonlinear beam shaping[J]. Optics Letters, 2012, 37(11): 2136-2138.

【145】Tymchenko M, Gomez-Diaz J S, Lee J, et al. Gradient nonlinear Pancharatnam-Berry metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403.

【146】Tymchenko M, Gomez-Diaz J S, Lee J, et al. Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces[J]. Physical Review B, 2016, 94(21): 214303.

【147】Walter F, Li G X, Meier C, et al. Ultrathin nonlinear metasurface for optical image encoding[J]. Nano Letters, 2017, 17(5): 3171-3175.

引用该论文

Yang Bo,Cheng Hua,Chen Shuqi,Tian Jianguo. Multi-Dimensional Manipulation of Optical Field by Metasurfaces Based on Fourier Analysis (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126005

杨渤,程化,陈树琪,田建国. 基于傅里叶分析的超表面多维光场调控(特邀综述)[J]. 光学学报, 2019, 39(1): 0126005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF