首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126011--1)

微纳光纤及其锁模激光应用(特邀综述)

Optical Microfibers and Their Applications in Mode-Locked Fiber Lasers (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微纳光纤是一种直径接近或小于传输光波长的纤维波导, 由于纤芯和包层折射率差较大, 具有强光场约束、强倏逝场、低损耗、反常波导色散、表面均匀性好和机械性能高等特性。近年来, 以纳米材料作为饱和吸收体的被动锁模激光器成为超短脉冲激光技术方向的研究热点。得益于微纳光纤的强光场约束能力及大比例倏逝场, 纳米材料与微纳光纤的复合结构能显著增强光与物质的相互作用, 进而降低该复合结构的饱和吸收阈值, 为超短脉冲产生和非线性动力学等研究提供一个新颖而灵活的平台。同时, 微纳光纤因具有反常波导色散、光谱滤波、饱和吸收和偏振敏感等特性, 在激光器的色散调控、偏振锁模等方面获得应用。介绍了微纳光纤的制备和特性以及在锁模激光方面的典型应用和相关技术的最新进展, 并就未来的发展方向进行了展望。

Abstract

Optical microfibers or nanofibers are waveguides with diameters close to or smaller than the guided wavelength. Because of the high contrast of the refractive index between the core and cladding material, they have the properties like strong light confinement, enhanced evanescent field, ultralow loss, abnormal waveguide dispersion, excellent surface uniformity and mechanical stability. In recent years, passively mode-locked fiber lasers based on nanomaterials saturable absorber have been a hotspot in the research field of ultrashort pulse generation. Benefitting from strong light confinement and large proportion of evanescent fields, the hybrid structure of nanomaterial and microfiber could enhance light-material interaction significantly and reduce the saturable absorption threshold, thus provide a flexible and innovative platform for the research on ultrashort pulse generation and nonlinear dynamics. Meanwhile, it has the properties of abnormal waveguide dispersion, spectral filtering, saturable absorption and polarization sensitivity, thus it could be applied for dispersion management and polarization induced mode-locking. This review article introduces the fabrication and characteristics of microfiber, its typical applications on mode-locked lasers, and related technology developments. The perspectives for future directions are also mentioned.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436;O437

DOI:10.3788/aos201939.0126011

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(61475140, 11527901, 61635009)

收稿日期:2018-10-08

修改稿日期:2018-11-07

网络出版日期:2018-11-18

作者单位    点击查看

王利镇:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
李林军:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
童利民:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:童利民(phytong@zju.edu.cn)

【1】Wu X Q, Wang Y, Tong L. Optical microfibers and their applications[J]. Physics, 2015, 44(6): 356-365.

【2】Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

【3】Jiang X S, Yang Q, Vienne G, et al. Demonstration of microfiber knot laser[J]. Applied Physics Letters, 2006, 89(14): 143513.

【4】Jiang X S, Song Q H, Xu L, et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain[J]. Applied Physics Letters, 2007, 90(23): 233501.

【5】Brambilla G, Xu F, Horak P, et al. Optical fiber nanowires and microwires: fabrication and applications[J]. Advances in Optics and Photonics, 2009, 1(1): 107-161.

【6】Wu X Q, Tong L M. Optical microfibers and nanofibers[J]. Nanophotonics, 2013, 2(5/6): 407-428.

【7】Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

【8】Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 2017, 25(9): 10434-10440.

【9】Wang L Z, Xu P Z, Li Y H, et al. Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management[J]. Scientific Reports, 2018, 8: 4732.

【10】Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express, 2004, 12(6): 1025-1035.

【11】Li Y, Wang L, Kang Y, et al. Microfiber-enabled dissipative soliton fiber laser at 2 μm[J]. Optics Letters, 2018, 43(24): 6105-6108.

【12】Zeng C, Cui Y D, Guo J. Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser[J]. Optics Communications, 2015, 347: 44-49.

【13】Wang Q, Khanh K, Honkanen S, et al. Mode-locked fiber/waveguide lasers based on a fiber taper embedded in carbon nanotubes/polymer composite[J]. Proceedings of SPIE, 2008, 6996: 69961A.

【14】Lau K Y, Ng E K, Abu Bakar M H, et al. Low threshold linear cavity mode-locked fiber laser using microfiber-based carbon nanotube saturable absorber[J]. Optics & Laser Technology, 2018, 102: 240-246.

【15】Yu Z H, Wang Y G, Zhang X, et al. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser[J]. Laser Physics, 2014, 24(1): 015105.

【16】Kieu K, Mansuripur M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite[J]. Optics Letters, 2007, 32(15): 2242-2244.

【17】Kashiwagi K, Yamashita S. Deposition of carbon nanotubes around microfiber via evanascent light[J]. Optics Express, 2009, 17(20): 18364-18370.

【18】Yu Z H, Wang Y G, Song Y R. The application of carbon nanotubes in mode locked fiber laser[J]. Proceedings of SPIE, 2013, 8923: 89231F.

【19】Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

【20】Liu X M, Yang H R, Cui Y D, et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers[J]. Scientific Reports, 2016, 6: 26024.

【21】He X Y, Xu M, Zhang X C, et al. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Frontiers of Optoelectronics, 2016, 9(4): 535-543.

【22】Wu X Q, Yu S L, Yang H R, et al. Effective transfer of micron-size graphene to microfibers for photonic applications[J]. Carbon, 2016, 96: 1114-1119.

【23】He X Y, Liu Z B, Wang D N, et al. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation[J]. Journal of Lightwave Technology, 2012, 30(7): 984-989.

【24】Luo Z Q, Huang Y Z, Wang J Z, et al. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1539-1542.

【25】Zhu P F, Lin Z B, Ning Q Y, et al. Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber[J]. Laser Physics Letters, 2013, 10(10): 105107.

【26】Qi Y L, Liu H, Cui H, et al. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser[J]. Optics Express, 2015, 23(14): 17720-17726.

【27】Yang G, Liu Y G, Wang Z, et al. Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber[J]. Laser Physics Letters, 2016, 13(6): 065105.

【28】Luo A P, Liu M, Wang X D, et al. Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser[Invited][J]. Photonics Research, 2015, 3(2): A69-A78.

【29】Cui Y D, Lu F F, Liu X M. MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons[J]. Scientific Reports, 2016, 6: 30524.

【30】Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction[J]. Scientific Reports, 2015, 4: 6346.

【31】Liu M, Zheng X W, Qi Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19): 22841-22846.

【32】Lu F F. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser[J]. Modern Physics Letters B, 2017, 31(32): 1750303.

【33】Chen H, Li I L, Ruan S C, et al. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers[J]. Optical Engineering, 2016, 55(8): 081318.

【34】Yan P G, Liu A J, Chen Y S, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

【35】Liu W J, Pang L H, Han H N, et al. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers[J]. Nanoscale, 2017, 9(18): 5806-5811.

【36】Liu W J, Pang L H, Han H N, et al. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers[J]. Optics Express, 2017, 25(3): 2950-2959.

【37】Li Y, He Y L, Cai Y, et al. Black phosphorus: broadband nonlinear optical absorption and application[J]. Laser Physics Letters, 2018, 15(2): 025301.

【38】Luo Z C, Liu M, Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15): 20030-20039.

【39】Yu H, Zheng X, Yin K, et al. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber[J]. Applied Optics, 2015, 54(34): 10290-10294.

【40】Lu F F. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber[J]. Modern Physics Letters B, 2017, 31(18): 1750206.

【41】Yin J D, Li J R, Chen H, et al. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers[J]. Optics Express, 2017, 25(24): 30020-30031.

【42】Wang J T, Jiang Z K, Chen H, et al. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 535-541.

【43】Wang J T, Chen H, Jiang Z K, et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J]. Optics Letters, 2018, 43(9): 1998-2001.

【44】Zhang K, Feng M, Ren Y Y, et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber[J]. Photonics Research, 2018, 6(9): 893-899.

【45】Semaan G, Meng Y, Salhi M, et al. High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber[J]. Proceedings of SPIE, 2016, 9893: 98930R.

【46】Yan P G, Lin R Y, Ruan S C, et al. A practical topological insulator saturable absorber for mode-locked fiber laser[J]. Scientific Reports, 2015, 5: 8690.

【47】Yan P G, Lin R Y, Ruan S C, et al. A 295 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film[J]. Optics Express, 2015, 23(1): 154-164.

【48】Li J P. Vector passive harmonic mode-locking fiber laser based on topological insulator Bi2Se3 interacting with fiber taper[J]. Journal of the Optical Society of Korea, 2016, 20(1): 135-139.

【49】Liu J M, Li X L, Zhang S M, et al. Polarization domain wall pulses in a microfiber-based topological insulator fiber laser[J]. Scientific Reports, 2016, 6: 29128.

【50】Luo Z C, Liu M, Liu H, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215.

【51】Du J, Zhang M, Guo Z, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers[J]. Scientific Reports, 2017, 7: 42357.

【52】Liu M, Yan Y R, Wang X D, et al. Black phosphorus quantum dots saturable absorber for dual-wavelength pulse cluster fiber laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0703013.
刘萌, 闫玉蓉, 汪徐德, 等. 基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器[J]. 中国激光, 2017, 44(7): 0703013.

【53】Wang X D, Luo Z C, Liu M, et al. A microfiber-based gold nanorod saturable absorber with evanescent field interaction for multi-soliton patterns in a fiber laser[J]. Laser Physics, 2016, 26(6): 065105.

【54】Guo B, Wang S H, Wu Z X, et al. Sub-200 fs soliton mode-locked fiber laser based on Bismuthene saturable absorber[J]. Optics Express, 2018, 26(18): 22750-22760.

【55】Mouchel P, Semaan G, Niang A, et al. High power passively mode-locked fiber laser based on graphene nanocoated optical taper[J]. Applied Physics Letters, 2017, 111(3): 031106.

【56】Wang Z H, Wang Z, Liu Y G, et al. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber[J]. Laser Physics Letters, 2018, 15(5): 055101.

【57】Liu B W, Xiang Y, Luo Y Y, et al. Soliton molecules in a fiber laser based on optic evanescent field interaction with WS2[J]. Applied Physics B, 2018, 124(7): 151.

【58】Luo A P, Zhu P F, Liu H, et al. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser[J]. Optics Express, 2014, 22(22): 27019-27025.

【59】Liu M, Cai Z R, Hu S, et al. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device[J]. Optics Letters, 2015, 40(20): 4767-4770.

【60】Wang Z H, He R J, Liu Y G, et al. Generation of trapezoidal envelope pulses and soliton rains from passively mode-locked fiber laser with MoS2 saturable absorber on microfiber[J]. Applied Physics Express, 2018, 11(7): 072504.

【61】Wang Z H, Wang Z, Liu Y G, et al. Noise-like pulses generated from a passively mode-locked fiber laser with a WS2 saturable absorber on microfiber[J]. Laser Physics Letters, 2018, 15(8): 085103.

【62】Rusu M, Herda R, Kivist S, et al. Fiber taper for dispersion management in a mode-locked ytterbium fiber laser[J]. Optics Letters, 2006, 31(15): 2257-2259.

【63】Yang P L, Teng H, Fang S B, et al. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management[J]. Optics Letters, 2018, 43(8): 1730-1733.

【64】Fang Q, Kieu K, Peyghambarian N. An all-fiber 2 μm wavelength-tunable mode-locked laser[J]. IEEE Photonics Technology Letters, 2010, 22(22): 1656-1658.

【65】Wang Y Z, Li J F, Zhai B, et al. Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper[J]. Optics Express, 2016, 24(14): 15299-15306.

【66】Zhao R W, Li G R, Zhang B T, et al. Optical modulation of microfibers and application to ultrafast fiber lasers[J]. RSC Advances, 2018, 8(17): 9120-9124.

【67】Zhang Z S, Gan J L, Yang T, et al. All-fiber mode-locked laser based on microfiber polarizer[J]. Optics Letters, 2015, 40(5): 784-787.

【68】Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 2014, 14(4): 5823-5844.

【69】Tong L M. Micro/nanofibre optical sensors: challenges and prospects[J]. Sensors, 2018, 18(3): 903-g001.

【70】Zhang Y, Jin W, Yu H B, et al. Novel intracavity sensing network based on mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2002, 14(9): 1336-1338.

【71】Wang S, Lu P, Liao H, et al. Passively mode-locked fiber laser sensor for acoustic pressure sensing[J]. Journal of Modern Optics, 2013, 60(21): 1892-1897.

【72】Chen D R, Sun B, Chen H Z, et al. A Fourier domain mode-locked fiber laser based on dual-pump fiber optical parametric amplification and its application for a sensing system[J]. Laser Physics, 2013, 23(7): 075110.

【73】Yu H B, Jin W, Liao Y B, et al. A novel fiber-optic intra-cavity sensing network using a mode-locked fiber ring laser[C]∥15th Optical Fiber Sensors Conference Technical Digest, May 10, 2002, Portland, OR, USA. New York: IEEE, 2002: 507-510.

【74】Huang J, Lan X W, Wei T, et al. Radio frequency interrogated actively mode-locked fiber ring laser for sensing application[J]. Optics Letters, 2012, 37(4): 494-496.

【75】Nakazaki Y, Yamashita S, Hsu K. Wide and fast wavelength-swept mode-locked fiber laser based on dispersion tuning and its application to dynamic FBG sensing[J]. Proceedings of SPIE, 2008, 7004: 70043R.

【76】Lee B H, Lee H D, Han G H, et al. Short cavity active mode locking fiber laser for optical sensing and imaging[J]. Proceedings of SPIE, 2014, 9157: 91572Q.

引用该论文

Wang Lizhen,Li Linjun,Tong Limin. Optical Microfibers and Their Applications in Mode-Locked Fiber Lasers (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126011

王利镇,李林军,童利民. 微纳光纤及其锁模激光应用(特邀综述)[J]. 光学学报, 2019, 39(1): 0126011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF