首页 > 论文 > 光电子技术 > 38卷 > 3期(pp:151-161)

增强石墨烯光电探测器光响应度研究进展

Recent Research Progress of Improving Photoresponsivity of Graphene Photodetector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

石墨烯具有从紫外到太赫兹波段范围内的超宽吸收光谱、超高载流子迁移率和超快光响应速度, 被认为是制作快速光电探测器的理想材料。然而, 具有一个原子层厚度的石墨烯的光吸收仅为2.3%, 同时石墨烯载流子皮秒量级的超快复合速率, 导致石墨烯光电探测器的光响应度较低, 为几十甚至零点几mA/W。为此, 科研人员提出了多种提高石墨烯光电探测器光响应度的方法, 使石墨烯光电探测器的光响应度获得显著提升, 目前最高已达到107 A/W。综述近年增强石墨烯光电探测器光响应度的研究进展, 分析各种方法的特点, 讨论石墨烯光电探测器未来可能的发展趋势和前景。

Abstract

Graphene has distinguished characteristics of ultra-wide absorption spectrum from ultraviolet to terahertz, ultra-high carrier mobility, ultra-fast photoresponse speed and so on. Graphene is considered to be the candidate for making fast photodetectors. However, graphene absorbs only 2.3% of light because of the thin film thickness of one atomic layer. Furthermore, graphene carriers usually recombine within picoseconds. These two factors lead to a low photoreponsivity up to tens of mA/W for graphene photodetectors. Therefore, researches have been focused on how to improve the photoresponsivity of graphene photodetectors and achieved positive results. Up to now, the highest photoresponsivity of 107A/W is impressive. Thus, researches about enhancing photoresponsivity of graphene photodetectors will be reviewed. Characteristics of different methods and the future development of graphene photodetector will be discussed and analyzed at the same time.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN36

DOI:10.19453/j.cnki.1005-488x.2018.03.002

所属栏目:研究与试制

基金项目:国家自然科学基金项目(No.61405084)

收稿日期:2017-12-27

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王兰喜:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
周 晖:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
张凯锋:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
王 虎:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
曹生珠:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
熊玉卿:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
王金晓:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
高恒蛟:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
李学磊:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
李 坤:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000
周 超:兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000

联系人作者:王兰喜(zhouhui510@sina.com)

备注:王兰喜(1979—), 男, 博士, 高级工程师, 主要从事先进碳材料、光电子学领域的研究;

【1】Geim A K , Novoselov K S . The rise of Graphene[J]. Nature Materials, 2007, 6: 183-191.

【2】Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of Graphene[J]. Reviews of Modern Physics, 2009, 81: 109-162.

【3】Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48: 7752-7777.

【4】Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of Graphene[J]. Science, 2008, 320: 1308.

【5】Kuzmenko A B, Van Heumen E, Carbone F, et al. Universal optical conductance of graphite[J]. Physical Review Letters, 2008, 100: 117401.

【6】Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of Graphene[J]. Physical Review Letters, 2008, 101: 196405.

【7】Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9: 273-278.

【8】Zhang Y Z, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer Graphene photodetector[J]. Nature Communications, 2013, 4: 1-11.

【9】Chen Z F, Cheng Z Z, Wang J Q, et al. High responsivity, broadband, and fast Graphene/silicon photodetector in photoconductor mode[J]. Advanced Optical Materials, 2015, 3: 1207-1214.

【10】Yang F, Cong H, Yu K, et al. Ultrathin broadband Germanium-Graphene hybrid photodetector with high performance[J]. ACS Applied Materials & Interfaces, 2017, 9: 13422-13429.

【11】Liu M, Yin X B, Zhang X. Double-layer Graphene optical modulator[J]. Nano Letters, 2012, 12: 1482-1485.

【12】Liu M, Yin X B, Ulin-Avila E, et al. A Graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64-67.

【13】Shin J S, Kim J T. Broadband silicon optical modulator using a Graphene-integrated hybrid plasmonic waveguide[J]. Nanotechnology, 2015, 26: 365201.

【14】Huang B H, Lu W B, Li X B, et al. Waveguide-coupled hybrid plasmonic modulator based on Graphene[J]. Applied Optics, 2016, 55: 5598-5602.

【15】张 超, 陈学康, 郭 磊, 等. 石墨烯太阳能电池透明电极的可行性分析[J]. 真空与低温, 2012, 18: 160-166.

【16】George P A, Strait J, Dawlaty J, et al. Ultrafast optical-pump Terahertz-probe spectroscopy of the Carrier relaxation and recombination dynamics in epitaxial Graphene[J]. Nano Letters, 2008, 8: 4248-4251.

【17】Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4: 297-301.

【18】Xia F N, Mueller T, Lin Y M, et al. Ultrafast Graphene photodetector[J]. Nature Nanotechnology, 2009, 4: 839-843.

【19】Freitag M, Low T, Avouris P. Increased responsivity of suspended Graphene photodetectors[J]. Nano Letters, 2013, 13: 1644-1648.

【20】Ahmadi E, Asgari A. Modeling of the infrared photodetector based on multi-layer armchair Graphene nanoribbons[J]. Journal of Applied Physics, 2013, 113: 093106.

【21】Yang L, Hu T, Hao R, et al. Low-chirp high-extinction-ratio modulator based on Graphene-silicon waveguide[J]. Optics Letters, 2013, 38: 2512-2515.

【22】Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated Graphene photodetector[J]. Nano Letter, 12: 2773-2777.

【23】Wang X M, Cheng Z Z, Xu K, et al. High-responsivity Graphene-Silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7: 888-891.

【24】Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong Plasmonic enhancement of photovoltage in Graphene[J]. Nature Communications, 2011, 2: 458.

【25】Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by Graphene[J]. Nature Communications, 2011, 2: 579.

【26】刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第7版. 北京: 电子工业出版社, 2010.

【27】Lan Y W, Torres JR C M, Zhu X D, et al. Self-aligned Graphene Oxide nanoribbon stack with gradient bandgap for visible-light photodetection[J]. Nano Energy, 2016, 27: 114-120.

【28】Jabbarzadeh F, Siahsar M, Dolatyari M, et al. Modification of Gaphene Oxide for applying as Mid-infrared photodetector[J]. Applied Physics B, 2015, 120: 637-643.

【29】Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in Graphene devices[J]. Nature Nanotechnology, 2008, 3: 486-490.

【30】Celis A, Nair M N, Taleb-Lbrahimi A, et al. Graphene nanoribbons: fabrication, properties and devices[J]. Journal of Physics D: Applied Physics, 2016, 49: 143001.

【31】Jensen S A, Mics Z, Ivanov I, et al. Competing ultrafast energy relaxation pathways in photoexcited Graphene[J]. Nano Letters, 2014, 14: 5839-5845.

【32】Brenneis A, Schade F, Drieschner S, et al. THz-circuits driven by photo-thermoelectric, gate-tunable Graphene-junctions[J]. Scientific Reports, 2016, 6: 35654.

【33】Zuev Y M, Chang W, Kim P. Thermoelectric and magnetothermoelectric transport measurements of Graphene[J]. Physical Review Letters, 2009, 102: 096807.

【34】Checkelsky J G, Ong N P. Thermopower and nernst effect in Graphene in a magnetic field[J]. Physical Review B, 2009, 80, 081413.

【35】Xu X D, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a Graphene interface junction[J]. Nano Letters, 2010, 10: 562-566.

【36】Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a Graphene p-n junction[J]. Nano Letters, 2011, 11: 4134-4137.

【37】李璟文, 陈学康, 曹生珠, 等. 基于导电聚合物的非制冷辐射热探测技术研究[J]. 红外技术, 2010, 32: 403-407.

【38】Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76: 1-24.

【39】Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended Graphene[J]. Solid State Communications, 2008, 146:351-355.

【40】Dean C R, Young A F, Lee M C, et al. Boron Nitride substrates for high-quality Graphene electronics[J]. Nature Nanotechnology, 2010, 5: 722-726.

【41】Xia Z H, Li P F, Wang Y S, et al. Solution-processed gold nanorods integrated with Graphene for near-infrared photodetection via hot carrier injection[J]. ACS Applied Materials & Interfaces, 2015, 7: 24136-24141.

【42】Wang L X, Chen X K, Wu G, et al. The mechanism of persistent photoconductivity induced by minority carrier trapping effect in ultraviolet photo-detector made of polycrystalline diamond film[J]. Thin Solid Films, 2011, 520: 752-755.

【43】袁国良. 光纤通信原理[M]. 北京: 清华大学出版社, 2004.

【44】Urich A, Unterrainer K, Mueller T. Intrinsic response time of Graphene photodetectors[J]. Nano Letters, 2011, 11: 2804-2808.

【45】Pospischil A, Humer M, Furchi M M, et al, CMOS-compatible Graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7: 892-896.

【46】童廉明, 徐红星. 表面等离激元—机理、应用与展望[J]. 物理, 2012, 41: 582-588.

【47】Kim U J, Yoo S, Park Y, et al. Plasmon-assisted designable multi-resonance photodetection by Graphene via nanopatterning of block copolymer[J]. ACS Photonics, 2015, 2: 506-514.

【48】Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid Graphene quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7: 363-368.

【49】Liu X, Ji X B, Liu M J, et al. High-performance Ge quantum dot decorated Graphene/Zinc-Oxide heterostructure infrared photodetector[J]. ACS Applied Materials & Interface, 2015, 7: 2452-2458.

【50】Lu Y H, Wu Z Q, Xu W L, et al. ZnO Quantum dot-doped Graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity[J]. Nanotechnology, 2016, 27: 48LT03.

引用该论文

WANG Lanxi,ZHOU Hui,ZHANG Kaifeng,WANG Hu,CAO Shengzhu,XIONG Yuqing,WANG Jinxiao,GAO Hengjiao,LI Xuelei,LI Kun,ZHOU Chao. Recent Research Progress of Improving Photoresponsivity of Graphene Photodetector[J]. Optoelectronic Technology, 2018, 38(3): 151-161

王兰喜,周 晖,张凯锋,王 虎,曹生珠,熊玉卿,王金晓,高恒蛟,李学磊,李 坤,周 超. 增强石墨烯光电探测器光响应度研究进展[J]. 光电子技术, 2018, 38(3): 151-161

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF