首页 > 论文 > 光电子技术 > 38卷 > 3期(pp:172-177)

CH3NH3PbI3薄膜中放大自发辐射效应的研究

Studies on the Amplified Spontaneous Emission in CH3NH3PbI3Thin Films

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用光谱学手段研究了CH3NH3PbI3薄膜中的放大自发辐射效应。首先,从随温度变化的光致发光(Photoluminescence,PL)光谱中观察到了CH3NH3PbI3从正交相到四方相的相变。在低于相变温度时, PL过程优先发生在四方相上。在较高的激发光强下, 正交相的PL峰由于四方相上激子浓度的饱和而逐渐显现,导致了放大自发辐射现象。然而, 放置15天后的CH3NH3PbI3薄膜中激光效应却出现在了四方相上, 表明CH3NH3PbI3薄膜中的缺陷态能够自发湮灭, 从而增强了四方相在低温下的光辐射能力。

Abstract

In order to further explore the photophysical processes and luminescence mechanisms in perovskite materials, the amplified spontaneous emission in CH3NH3PbI3 films was studied. Firstly,the phase transition of CH3NH3PbI3 from the orthorhombic phase to the tetragonal phase was observed from the temperature-dependent photoluminescence (PL) spectra. Below the phase transition temperature, the PL process occurred preferentially on the tetragonal phase. At the higher excitation light intensity, the PL peak of the orthorhombic phase gradually appeared due to the saturation of the exciton concentration on the tetragonal phase, resulting in the amplification of the spontaneous emission. However, the laser effect in the CH3NH3PbI3 thin film after storage for 15 days appeared in the tetragonal phase, indicating that the defect state in the CH3NH3PbI3 thin film can be spontaneously quenched, thereby enhancing the light radiation ability of the tetragonal phase at low temperature.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN383

DOI:10.19453/j.cnki.1005-488x.2018.03.005

所属栏目:研究与试制

基金项目:国家自然科学基金面上项目(No.61574078)

收稿日期:2018-05-11

修改稿日期:--

网络出版日期:--

作者单位    点击查看

刘 雨:南京理工大学 电子工程与光电技术学院, 南京 210094
孟 祥:南京理工大学 电子工程与光电技术学院, 南京 210094
钟凯伦:南京理工大学 电子工程与光电技术学院, 南京 210094
杨 潇:南京理工大学 电子工程与光电技术学院, 南京 210094
盛传祥:南京理工大学 电子工程与光电技术学院, 南京 210094

联系人作者:刘雨(Lyouzhi416@163.com)

备注:刘 雨(1995—), 男, 主要从事半导体发光材料与光电子器件研究。

【1】Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.

【2】National Renewable Energy Labs. Best Research-Cell efficiencies [EB/OL].https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg.

【3】Xing G, Mathews N, Sun S, et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science,2013,342(6156):344-347.

【4】Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J].The Journal of Physical Chemistry Letters,2014,5(8):1421-1426.

【5】Eperon G E, Stranks S D, Menelaou C,et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J].Energy & Environmental Science,2014,7(3):982-988.

【6】Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Letters,2013,13(4):1764-1769.

【7】Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J].Nature Materials,2014,13(5):476-480.

【8】Hirasawa M, Ishihara T, Goto T, et al.Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3[J]. Physica B: Condensed Matter,1994,201:427-430.

【9】Sutherland B R, Hoogland S, Adachi M M, et al. Conformal organohalide perovskite senable lasing on spherical resonators[J].ACS Nano,2014,8(10):10947-10952.

【10】Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J].Nano Lett,2014,14(10):5995-6001.

【11】Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks[J].Applied Physics Letters,2014,105(15):151112.

【12】Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].Journal of Materials Chemistry A,2013,1(18):5628-5641.

【13】D’Innocenzo V, Grancini G, Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J].Nature Communications,2014,5:3586.

【14】Wehrenfennig C, Liu M, Snaith H J, et al. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films[J].APL Materials,2014,2(8):081513.

【15】Wu X, Trinh M T, Niesner D, et al. Trap states in lead iodide perovskites[J].Journal of the American Chemical Society,2015,137(5):2089-2096.

【16】Kao T S, Chou Y H, Chou C H, et al. Lasing behaviors upon phase transition in solution-processed perovskite thin films[J].Applied Physics Letters,2014,105(23):231108.

【17】Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks[J].Applied Physics Letters,2014,105(15):151112.

【18】Yamada Y, Endo M, Wakamiya A, et al. Spontaneous defect annihilation in CH3NH3PbI3 thin films at room temperature revealed by time-resolved photoluminescence spectroscopy[J].The Journal of Physical Chemistry Letters,2015,6(3):482-486.

【19】Sadhanala A, Deschler F, Thomas T H,et al. Preparation of single-phase films of CH3NH3Pb(I1–xBrx)3 with sharp optical band edges[J].The Journal of Physical Chemistry Letters,2014,5(15):2501-2505.

引用该论文

LIU Yu,MENG Xiang,ZHONG Kailun,YANG Xiao,SHENG Chuanxiang. Studies on the Amplified Spontaneous Emission in CH3NH3PbI3Thin Films[J]. Optoelectronic Technology, 2018, 38(3): 172-177

刘 雨,孟 祥,钟凯伦,杨 潇,盛传祥. CH3NH3PbI3薄膜中放大自发辐射效应的研究[J]. 光电子技术, 2018, 38(3): 172-177

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF