Chinese Optics Letters, 2019, 17 (1): 012501, Published Online: Jan. 17, 2019  

Nonlinear polaritons in metamaterials with plasmon-induced transparency [Invited] Download: 746次

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, Shanghai 200062, China
2 NYU-ECNU Joint Institute of Physics at NYU-Shanghai, Shanghai 200062, China
Abstract
Electromagnetically induced transparency (EIT), a typical quantum interference effect, has been extensively investigated in coherent atomic gases. In recent years, it has been recognized that the plasmonic analog of atomic EIT, called plasmon-induced transparency (PIT), is a fruitful platform for the study of EIT-like propagation and interaction of plasmonic polaritons. Many proposals have been presented for realizing PIT in various metamaterials, which possess many unique characters, including the suppression of absorption of electromagnetic radiation, the reduction of propagation velocity, etc. Especially, nonlinear PIT metamaterials, obtained usually by embedding nonlinear elements into meta-atoms, can be used to acquire an enhanced Kerr effect resulted from the resonant coupling between radiation and the meta-atoms and to actively manipulate structural and dynamical properties of plasmonic metamaterials. In this article, we review recent research progress in nonlinear PIT metamaterials, and elucidate their interesting properties and promising applications. In particular, we give a detailed description on the propagation and interaction of nonlinear plasmonic polaritons in metamaterials via PIT, which are promising for chip-scale applications in information processing and transmission.

Zhengyang Bai, Qi Zhang, Guoxiang Huang. Nonlinear polaritons in metamaterials with plasmon-induced transparency [Invited][J]. Chinese Optics Letters, 2019, 17(1): 012501.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!