首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21401--1)

基于选择性激光烧结的石墨骨架电镀铜工艺实验研究

Copper Plating of Graphite Skeletons Based on Selective Laser Sintering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为改善结合界面的状况, 缩短工艺流程, 降低铜的消耗, 减少生产投入, 采用选择性激光烧结成型技术快速制备多孔石墨成型件。在此基础上, 研究了不同石墨预制体状态、电镀工艺参数和电镀时间对镀层的沉积速率、表观形貌以及镀层与基体结合状况的影响。结果表明:未经真空压力浸渍酚醛树脂的石墨预制体, 其镀层与基体的结合力不符合应用要求, 在真空压力下浸渍酚醛树脂2~3次后, 镀层沉积速率较佳, 镀层与基体的结合力符合应用要求; 电镀时间为30~50 min时, 沉积速率较佳, 可得到表面覆盖完整、连续且有光泽的镀层; 电流密度为5×102~6.25×102 A·m-2时, 镀层晶粒均匀致密, 可得到较佳的镀层。

Abstract

To improve the interface, shorten the process, and reduce copper consumption as well as production input, we use selective laser sintering technology to rapidly prepare molded parts of porous graphite. The effects of graphite preformation states, electroplating process parameters, and plating time on the deposition rate, the apparent morphology and bonding conditions of the plating and substrate are studied. The results reveal that for the preformed graphite that is not impregnated with phenolic resin, the bonding strength between the plating and the substrate does not meet the application requirements. After the preformed graphite is immersed in phenolic resin for 2-3 times under a vacuum pressure, the plating deposition rate is best, and the bonding force between the plating and the substrate meets the application requirements. When the electroplating time is 30 min to 50 min, the deposition rate is best, and a complete, continuous, and glossy plating on the surface can be obtained. When the current density is 5×102-6.25×102 A·m-2, the plated grains are uniform and dense, and a better plating can be obtained.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH145.1+3

DOI:10.3788/lop56.021401

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51575313)

收稿日期:2018-05-30

修改稿日期:2018-07-13

网络出版日期:2018-08-02

作者单位    点击查看

吴海华:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
王亚迪:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
钟纪红:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
彭建辉:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
陈奎:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
魏正英:三峡大学水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002

联系人作者:吴海华(652146213@qq.com)

【1】Zhan Y Z, Zhang G D. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles[J]. Tribology Letters, 2004, 17(1): 91-98.

【2】Chen B M, Bi Q L, Yang J, et al. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites[J]. Tribology International, 2008, 41(12): 1145-1152.

【3】Zhan Y Z, Zhang G D. Graphite and SiC hybrid particles reinforced copper composite and its tribological characteristic[J]. Journal of Materials Science Letters, 2003, 22(15): 1087-1089.

【4】Queipo P, Granda M, Santamaría R, et al. Preparation of pitch-based carbon-copper composites for electrical applications[J]. Fuel, 2004, 83(11/12): 1625-1634.

【5】Wang W F, Xu S F, Ying M F, et al. Research on the copper coating graphite copper matrix composites[J]. Journal of Hefei University of Technology(Natural Science), 1999(1): 37-40.
王文芳, 许少凡, 应美芳, 等. 镀铜石墨-铜基复合材料组织与性能研究[J]. 合肥工业大学学报(自然科学版), 1999(1): 37-40.

【6】Li C Q, Wang Z T, Zhao G G. Characteristics of electroless copper-coated graphite and its copper matrix composites[J]. Journal of Heilongjiang Institute of Science and Technology, 2011, 21(5): 349-352, 399.
李长青, 王振廷, 赵国刚. 化学镀铜石墨粉及其铜基复合材料的性能[J]. 黑龙江科技学院学报, 2011, 21(5): 349-352, 399.

【7】Wen C C, Kuo W S. Experimental study on shear failure behaviors and wear resistance of copper-electroplated graphite compacts[J]. Advanced Materials Research, 2014, 934: 53-59.

【8】Liu J. Preparation and friction and wear properties of copper-based composite pantograph slides[D]. Changsha: Hunan University, 2007.
刘军. 铜基复合材料受电弓滑板的制备及其摩擦磨损性能研究[D]. 长沙: 湖南大学, 2007.

【9】Wu H H, Yan J N, Li T F, et al. Experimental study on molding precision for Graphite/Phenolic resin mixed powders processed by selective laser sintering[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081405.
吴海华, 鄢俊能, 李腾飞, 等. 石墨/酚醛树脂混合粉末选择性激光烧结成型精度实验研究[J]. 激光与光电子学进展, 2017, 54(8): 081405.

【10】Wu H H, Li T F, Xiao L N, et al. Research on forming process of flake graphite powder by selective laser sintering[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101409.
吴海华, 李腾飞, 肖林楠, 等. 鳞片石墨粉末选择性激光烧结成型工艺研究[J]. 激光与光电子学进展, 2016, 53(10): 101409.

【11】State Bureau of Technical Supervision. Adhesives, 180° peel strength test method for a flexible-bonged-to-rigid test specimen assembly: GB/T 2790-1995[S]. Beijing: China Standards Press, 1996-08-01.
国家技术监督局. 胶粘剂180°剥离强度试验方法: 挠性材料对刚性材料: GB/T 2790-1995[S]. 北京: 中国标准出版社, 1996-08-01.

【12】Zhang Y C, Hu R N, Xiang R. Electroplating handbook[M]. 4th ed. Beijing: National Defense Industry Press, 2011: 15-26.
张允诚, 胡如南, 向荣. 电镀手册[M]. 4版, 北京: 国防工业出版社, 2011: 15-26.

【13】Andersen J E, Bech-Nielsen G, Mller P. Bulk crystalline copper electrodeposited on polycrystalline gold surfaces observed by in-situ scanning tunneling microscopy[J]. Surface & Coatings Technology, 1994, 70(1): 87-95.

引用该论文

Wu Haihua,Wang Yadi,Zhong Jihong,Peng Jianhui,Chen Kui,Wei Zhengying. Copper Plating of Graphite Skeletons Based on Selective Laser Sintering[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021401

吴海华,王亚迪,钟纪红,彭建辉,陈奎,魏正英. 基于选择性激光烧结的石墨骨架电镀铜工艺实验研究[J]. 激光与光电子学进展, 2019, 56(2): 021401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF