首页 > 论文 > 中国激光 > 46卷 > 1期(pp:101003--1)

基于保偏掺铥光纤饱和吸收体的2 μm波段超窄线宽光纤激光器

Ultra-Narrow-Linewidth Fiber Laser in 2 μm Band Using Saturable Absorber Based on PM-TDF

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制作了一种单纵模超窄线宽环形腔掺铥光纤激光器, 使用未抽运的保偏掺铥光纤作为饱和吸收体, 结合光纤光栅法布里-珀罗滤波器, 实现了激光器的单纵模运转和超窄线宽输出。实验结果表明:激光器在室温下可以获得中心波长为1942.03 nm、光信噪比为63 dB的稳定输出。通过100 min的连续测量, 激光输出功率的波动小于0.62 dB, 中心波长的波动小于光谱仪的最小分辨率0.05 nm, 在一定时间内具有良好的稳定性。采用基于频率噪声的线宽测量方法测得0.01 s测量时间下的线宽为300 Hz, 在0.1 s测量时间下的线宽约为3 kHz。所制作的激光器将在对2 μm波段激光纵模及线宽特性有严格要求的领域具有重要应用价值。

Abstract

In this paper, a ring cavity Tm-doped fiber laser with both single longitudinal mode and ultra narrow linewidth is proposed and demonstrated. An unpumped polarization maintaining Tm-doped fiber (PM-TDF) and a narrowband F-P filter are combined to realize the single longitudinal mode lasing operation and ultra narrow linewidth. Experimental results show that the proposed laser is stably operating at central wavelength of 1942.03 nm and the optical signal-to-noise ratio is 63 dB at room temperature. Through 100 minutes of continuous measurement, the output power fluctuation is less than 0.62 dB and the center wavelength shift is less than the minimum resolution of the spectrometer of 0.05 nm. This indicates that it has good stability for a certain period of time. Through the linewidth measurement based on frequency noise, linewidth of the laser under the measuring time of 0.01 s and 0.1 s are 300 Hz and 3 kHz, respectively. The proposal will be applied significantly in the field where the longitudinal mode and linewidth specificity of a laser are strictly required for 2 μm wave band.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201946.0101003

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61620106014)、山东省高等学校科技计划项目(J17KA089)

收稿日期:2018-07-16

修改稿日期:2018-09-16

网络出版日期:2018-10-17

作者单位    点击查看

白燕:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
延凤平:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
冯亭:光信息技术创新中心, 河北省光电信息材料重点实验室, 河北大学物理科学与技术学院, 河北 保定 071002
韩文国:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
张鲁娜:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
程丹:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
白卓娅:北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
温晓东:曲阜师范大学物理工程学院, 山东 曲阜 273165

联系人作者:延凤平(fpyan@bjtu.edu.cn)

【1】Niwa Massaki A B M, Eimpunth S, Fabi S G, et al. Treatment of melasma with the 1927-nm fractional thulium fiber laser: a retrospective analysis of 20 cases with long-term follow-up[J]. Lasers in Surgery and Medicine, 2013, 45(2): 95-101.

【2】Voo N Y, Sahu J K, Ibsen M. 345-mW 1836-nm single-frequency DFB fiber laser MOPA[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2550-2552.

【3】de Young R J, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 2010, 49(4): 562-567.

【4】Li J F, Sun Z Y, Luo H Y, et al. Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm[J]. Optics Express, 2014, 22(5): 5387-5399.

【5】Ma W Z, Wang T S, Su Y W, et al. Wavelength-spacing switchable dual-wavelength single longitudinal mode thulium-doped fiber laser at 1.9 μm[J]. IEEE Photonics Journal, 2016, 8(6): 1-8.

【6】He X, Xu S H, Li C, et al. 195 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber[J]. Optics Express, 2013, 21(18): 20800-20805.

【7】Hanna D C, Jauncey I M, Percival R M, et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 1988, 24(19): 1222-1223.

【8】Frith G, Lancaster D G, Jackson S D.85 W Tm3+-doped silica fibre laser[J]. Electronics Letters, 2005, 41(12): 687-688.

【9】Moulton P F, Rines G A, Slobodtchikov E V,et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.

【10】Kneis C, Donelan B, Berrou A, et al. Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power[J]. Optics Letters, 2015, 40(7): 1464-1467.

【11】Tang Y L, Huang C Y, Wang S L, et al. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Optics Express, 2012, 20(16): 17539-17544.

【12】Liu Y Z, Xing Y B, Xu Z W,et al. Research progress in high power Tm3+-doped silica fiber laser[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050004.
刘茵紫, 邢颍滨, 徐中巍, 等. 高功率掺铥石英光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050004.

【13】Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

【14】Geng J H, Wu J F, Jiang S B, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 2007, 32(4): 355-357.

【15】Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419.

【16】Fu S J, Shi W, Lin J C, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber[J]. Optics Letters, 2015, 40(22): 5283-5286.

【17】Shi W, Petersen E B, Nguyen D T, et al. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers[J]. Optics Letters, 2011, 36(18): 3575-3577.

【18】Fang Q, Shi W, Tian X P, et al. 978 nm single frequency actively-switched all fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(9): 874-876.

【19】Geng J, Wang Q, Jiang Z, et al. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm[J]. Optics Letters, 2011, 36(12): 2293-2295.

【20】Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254.

【21】Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 15 μm[J]. Optics Express, 2010, 18(2): 1249-1254.

【22】Jiao M J, Wang X, Hu L L. Influences of Tm2O3 doping concentration on thermal stability and spectroscopic properties of germanate glass[J]. Chinese Journal of Lasers, 2018, 45(6): 0603001.
焦孟珺, 王欣, 胡丽丽. Tm2O3掺杂浓度对锗酸盐玻璃热稳定性及光谱性质的影响[J]. 中国激光, 2018, 45(6): 0603001.

【23】Cheng X P, Shum P, Tse C H, et al. Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Prot etalon[J]. IEEE Photonics Technology Letters, 2008, 20(12): 976-978.

【24】Sun T G, Guo Y B, Wang T S, et al. Widely tunable wavelength spacing dual-wavelength single longitudinal mode erbium doped fiber laser[J]. Optical Fiber Technology, 2014, 20(3): 235-238.

【25】Yeh C H, Chow C W, Chen K H, et al. Employing dual-saturable-absorber-based filter for stable and tunable erbium-doped fiber ring laser in single-frequency[J]. Laser Physics, 2011, 21(5): 924-927.

【26】Xu P, Hu Z L, Ma M X, et al. Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber[J]. Optics & Laser Technology, 2013, 49: 337-342.

【27】Feng S C, Lu S H, Peng W J, et al. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber[J]. Optics & Laser Technology, 2013, 47: 102-106.

【28】Bai Y, Yan F P, Sun J H, et al. Single-longitudinal-mode thulium-doped fiber laser using Fabry-Perot filter and saturable absorber[J]. Science & Technology Review, 2016, 34(16): 104-107.
白燕, 延凤平, 孙景辉, 等. 基于F-P滤波器和饱和吸收体的单纵模掺铥激光器[J]. 科技导报, 2016, 34(16): 104-107.

【29】Okamura H, Iwatsuki K. A finesse-enhanced Er-doped-fiber ring resonator[J]. Journal of Lightwave Technology, 1991, 9(11): 1554-1560.

【30】Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

【31】Guan B O, Yu Y L, Ge C F, et al. Theoretical studies on transmission characteristics of fiber grating Fabry-Perot cavity[J]. Acta Optica Sinica, 2000, 20(1): 34-38.
关柏鸥, 余有龙, 葛春风, 等. 光纤光栅法布里-珀罗腔透射特性的理论研究[J]. 光学学报, 2000, 20(1): 34-38.

【32】Kang M S, Lee M S, Yong J C, et al. Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter[J]. Journal of Lightwave Technology, 2006, 24(4): 1812-1823.

【33】Horowitz M, Daisy R, Fischer B, et al. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing[J]. Optics Letters, 1994, 19(18): 1406-1408.

【34】Zhang K, Kang J U. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser[J]. Optics Express, 2008, 16(18): 14173-14179.

【35】di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 2010, 49(25): 4801-4807.

【36】The lowest noise laser on earth[EB/OL].http://www.orbitslightwave.com/assets/pdf/ETH-x-1xxx-x-x%20laser%20module.pdf

引用该论文

Bai Yan,Yan Fengping,Feng Ting,Han Wenguo,Zhang Luna,Cheng Dan,Bai Zhuoya,Wen Xiaodong. Ultra-Narrow-Linewidth Fiber Laser in 2 μm Band Using Saturable Absorber Based on PM-TDF[J]. Chinese Journal of Lasers, 2019, 46(1): 0101003

白燕,延凤平,冯亭,韩文国,张鲁娜,程丹,白卓娅,温晓东. 基于保偏掺铥光纤饱和吸收体的2 μm波段超窄线宽光纤激光器[J]. 中国激光, 2019, 46(1): 0101003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF