首页 > 论文 > Advanced Photonics > 1卷 > 1期(pp:16002--1)

Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens

Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view (FOV). We report a subvoxel light-sheet microscopy (SLSM) method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution. A nonaxial, continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional (3-D) nanoscale shifts encoded. Then, by adopting a subvoxel-resolving procedure, the SLSM method models these low-resolution, cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample. This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times, with high acquisition speeds of gigavoxels per minute. By fast reconstruction of 3-D cultured cells, intact organs, and live embryos, SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue (>100 mm3) and observing single cell (~1-μm resolution). It also eliminates the need of complicated mechanical stitching or modulated illumination, using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput, high-resolution 3-D microscopy, which could be tailored for a wide range of biomedical applications in pathology, histology, neuroscience, etc.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1117/1.ap.1.1.016002

所属栏目:Research Articles

基金项目:The authors acknowledge the contributions of R. Ardehali and K. Sereti, who assisted with heart sample selection and preparation, as well as R. Kulkarni, H. Chen, and K. Sung, who assisted with organ clearing. The authors also thank X. Wang and Y. Bu for discussions on zebrafish data analysis, and Z. Yu and S. Dong for their assistance with instrumentation and GPU-based computation.

收稿日期:2018-07-18

修改稿日期:--

网络出版日期:--

作者单位    点击查看

Peng Fei:Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, ChinaHuazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
Jun Nie:Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
Juhyun Lee:University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United StatesUniversity of Texas at Arlington, Joint Department of Bioengineering of UT Arlington/UT Southwestern, Arlington, Texas, United States
Yichen Ding:University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United StatesUniversity of California, Los Angeles, School of Medicine, Los Angeles, California, United States
Shuoran Li:University of California, Los Angeles, Chemical and Biomolecular Engineering Department, Los Angeles, California, United States
Hao Zhang:Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
Masaya Hagiwara:Osaka Prefecture University, Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka, JapanUniversity of California, Los Angeles, Mechanical and Aerospace Engineering Department, Los Angeles, California, United States
Tingting Yu:Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
Tatiana Segura:University of California, Los Angeles, Chemical and Biomolecular Engineering Department, Los Angeles, California, United States
Chih-Ming Ho:University of California, Los Angeles, Mechanical and Aerospace Engineering Department, Los Angeles, California, United States
Dan Zhu:Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
Tzung K. Hsiai:University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United StatesUniversity of California, Los Angeles, School of Medicine, Los Angeles, California, United States

联系人作者:Peng Fei(feipeng@hust.edu.cn)

【1】S. G.Megason and S. E.Fraser, “Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development,” Mech. Dev.120(11), 1407–1420 (2003).

【2】K.Chunget al., “Structural and molecular interrogation of intact biological systems,” Nature497(7449), 332–337 (2013).

【3】B.Yanget al., “Single-cell phenotyping within transparent intact tissue through whole-body clearing,” Cell158(4), 945–958 (2014).0092-8674

【4】T.Raganet al., “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods9(3), 255–258 (2012).1548-7091

【5】M.Chalfieet al., “Green fluorescent protein as a marker for gene expression,” Science263(5148), 802–805 (1994).0036-8075

【6】B. R.Masters, “Book Review: Handbook of Biological Confocal Microscopy, Second Edition. Edited by J. B. Pawley,” Opt. Eng.35(9), 2765–2766 (1996).

【7】J. W.Lichtman and J. A.Conchello, “Fluorescence microscopy,” Nat. Methods2(12), 910–919 (2005).1548-7091

【8】R. M.Power and J.Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods14(4), 360–373 (2017).1548-7091

【9】J.Huiskenet al., “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).0036-8075

【10】P. J.Kelleret al., “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science322(5904), 1065–1069 (2008).0036-8075

【11】P. J.Kelleret al., “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010).1548-7091

【12】B. C.Chenet al., “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science346(6208), 1257998 (2014).0036-8075

【13】M. B.Ahrenset al., “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods10(5), 413–420 (2013).1548-7091

【14】E. A.Susakiet al., “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell157(3), 726–739 (2014).0092-8674

【15】P. J.Keller and M. B.Ahrens, “Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy,” Neuron85(3), 462–483 (2015).0896-6273

【16】N.Vladimirovet al., “Light-sheet functional imaging in fictively behaving zebrafish,” Nat. Methods11(9), 883–884 (2014).1548-7091

【17】T. F.Holekamp, D.Turaga and T. E.Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).0896-6273

【18】H.-U.Dodtet al., “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods4(4), 331 (2007).1548-7091

【19】J.Leeet al., “4-dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation,” J. Clin. Invest.126(5), 1679–1690 (2016).0021-9738

【20】P.Feiet al., “Cardiac light-sheet fluorescent microscopy for multi-scale and rapid imaging of architecture and function,” Sci. Rep.6, 22489 (2016).2045-2322

【21】Z.Guanet al., “Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope,” Biomed. Opt. Express7(1), 194–208 (2016).2156-7085

【22】R.Tomeret al., “Advanced CLARITY for rapid and high-resolution imaging of intact tissues,” Nat. Protocols9(7), 1682–1697 (2014).1754-2189

【23】Y.Dinget al., “Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution,” Sci. Rep.7, 42209 (2017).2045-2322

【24】A. W.Lohmannet al., “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A13(3), 470–473 (1996).0740-3232

【25】M.Brown and D. G.Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vision74(1), 59–73 (2007).0920-5691

【26】R.Szeliski, “Image alignment and stitching: a tutorial,” Found. Trends Comput. Graphics Vision2(1), 1–104 (2006).

【27】P. A.Santiet al., “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” BioTechniques46(4), 287–294 (2009).0736-6205

【28】J. A.Buytaert and J. J.Dirckx, “Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning,” Appl. Opt.48(5), 941–948 (2009).0003-6935

【29】A. K.Glaseret al., “Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens,” Nat. Biomed. Eng.1, 0084 (2017).

【30】A. M.Maiden, J. M.Rodenburg and M. J.Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35(15), 2585–2587 (2010).0146-9592

【31】G.Zheng, R.Horstmeyer and C.Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).1749-4885

【32】T. R.Hillmanet al., “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).1094-4087

【33】C.Fangyenet al., “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett.36(2), 148–150 (2011).0146-9592

【34】T.Gutzleret al., “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett.35(8), 1136–1138 (2010).0146-9592

【35】W.Luoet al., “Synthetic aperture-based on-chip microscopy,” Light: Sci. Appl.4(3), e261 (2015).

【36】G.Zhenget al., “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip10(22), 3125–3129 (2010).1473-0197

【37】G.Zhenget al., “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U. S. A.108(41), 16889–16894 (2011).

【38】W.Luoet al., “Pixel super-resolution using wavelength scanning,” Light Sci. Appl.5(4), e16060 (2016).

【39】W.Xuet al., “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A.98(20), 11301–11305 (2001).

【40】L.Deniset al., “Inline hologram reconstruction with sparsity constraints,” Opt. Lett.34(22), 3475–3477 (2009).0146-9592

【41】A.Greenbaumet al., “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3(1), 1717 (2013).2045-2322

【42】M.Elad and Y.Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process.10(8), 1187–1193 (2001).1057-7149

【43】S.Farsiuet al., “Fast and robust multiframe super resolution,” IEEE Trans. Image Process.13(10), 1327–1344 (2004).1057-7149

【44】P.Vandewalle, S.Süsstrunk and M.Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Adv. Signal Process.2006, 1–15 (2006).

【45】A.Greenbaum, U.Sikora and A.Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip12(7), 1242–1245 (2012).1473-0197

【46】J.Swogeret al., “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express15(13), 8029–8042 (2007).1094-4087

【47】A.Diaspro, F.Federici and M.Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt.41(4), 685–690 (2002).

【48】M.Born and E.Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, Amsterdam, Netherlands (2013).

【49】D. S.Wan, M.Rajadhyaksha and R.Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc.197(3), 274–284 (2000).

【50】S.Preibischet al., “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods7(6), 418–419 (2010).1548-7091

【51】G.Paxinos and K. B.Franklin, The Mouse Brain in Stereotaxic Coordinates, Gulf Professional Publishing, Houston, Texas (2004).

【52】S.Preibischet al., “Efficient Bayesian-based multiview deconvolution,” Nat. Methods11(6), 645–648 (2014).1548-7091

【53】C.Panet al., “Shrinkage-mediated imaging of entire organs and organisms using uDISCO,” Nat. Methods13(10), 859–867 (2016).1548-7091

引用该论文

Peng Fei,Jun Nie,Juhyun Lee,Yichen Ding,Shuoran Li,Hao Zhang,Masaya Hagiwara,Tingting Yu,Tatiana Segura,Chih-Ming Ho,Dan Zhu,Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002

Peng Fei,Jun Nie,Juhyun Lee,Yichen Ding,Shuoran Li,Hao Zhang,Masaya Hagiwara,Tingting Yu,Tatiana Segura,Chih-Ming Ho,Dan Zhu,Tzung K. Hsiai. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1): 016002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF