首页 > 论文 > Advanced Photonics > 1卷 > 1期(pp:16003--1)

Revealing the behavior of soliton buildup in a mode-locked laser

Revealing the behavior of soliton buildup in a mode-locked laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Real-time spectroscopy based on an emerging time-stretch technique can map the spectral information of optical waves into the time domain, opening several fascinating explorations of nonlinear dynamics in mode-locked lasers. However, the self-starting process of mode-locked lasers is quite sensitive to environmental perturbation, which causes the transient behaviors of lasers to deviate from the true buildup process of solitons. We optimize the laser system to improve its stability, which suppresses the Q-switched lasing induced by environmental perturbation. We, therefore, demonstrate the first observation of the entire buildup process of solitons in a mode-locked laser, revealing two possible pathways to generate the temporal solitons. One pathway includes the dynamics of raised relaxation oscillation, quasimode-locking stage, spectral beating behavior, and finally the stable single-soliton mode-locking. The other pathway contains, however, an extra transient bound-state stage before the final single-pulse mode-locking operation. Moreover, we propose a theoretical model to predict the buildup time of solitons, which agrees well with the experimental results. Our findings can bring real-time insights into ultrafast fiber laser design and optimization, as well as promote the application of fiber laser.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1117/1.ap.1.1.016003

所属栏目:Research Articles

基金项目:We thank X. Yao, X. Han, G. Chen, W. Li, G. Wang, and Y. Zhang for fruitful discussions. The work was supported by the National Natural Science Foundation of China under Grant Nos. 61525505, 11774310, and 61705193, by the Key Scientific and Technological Innovation Team Project in Shaanxi Province (2015KCT-06), and by China Postdoctoral Science Foundation (2017M610367).

收稿日期:2018-10-22

修改稿日期:--

网络出版日期:--

作者单位    点击查看

Xueming Liu:Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, ChinaNanjing University of Aeronautics and Astronautics, Institute for Advanced Interdisciplinary Research, Nanjing, ChinaHunan University of Science and Technology, School of Physics and Electronic Science, Xiangtan, China
Yudong Cui:Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China

联系人作者:Xueming Liu(liuxueming72@yahoo.com)

【1】G.Herinket al., “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90?MHz frame rate,” Nat. Photonics10, 321–326 (2016).1749-4885

【2】M.Andersonet al., “Coexistence of multiple nonlinear states in a tristable passive Kerr resonator,” Phys. Rev. X7(3), 031031 (2017).2160-3308

【3】K.Goda, K. K.Tsia and B.Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458, 1145–1149 (2009).

【4】B.Liet al., “Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics,” Nat. Commun.8, 61 (2017).2041-1723

【5】M.Panget al., “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics10, 454–458 (2016).1749-4885

【6】H.Guoet al., “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys.13, 94–102 (2017).1745-2473

【7】M.Chernyshevaet al., “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics6(1), 1–30 (2017).

【8】P. J.Ackerman and I. I.Smalyukh, “Diversity of knot solitons in liquid crystals manifested by linking of preimages in Torons and Hopfions,” Phys. Rev. X7(1), 011006 (2017).2160-3308

【9】J. M.Dudleyet al., “Instabilities, breathers and rogue waves in optics,” Nat. Photonics8, 755–764 (2014).1749-4885

【10】E.Obrzud, S.Lecomte and T.Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics11, 600–607 (2017).1749-4885

【11】P.Grelu and N.Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6, 84–92 (2012).1749-4885

【12】Y.Wanget al., “Universal mechanism for the binding of temporal cavity solitons,” Optica4(8), 855–863 (2017).

【13】M.Yuet al., “Breather soliton dynamics in microresonators,” Nat. Commun.8, 14569 (2017).2041-1723

【14】Q.Yanget al., “Counter-propagating solitons in microresonators,” Nat. Photonics11, 560–564 (2017).1749-4885

【15】X.Yiet al., “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun.8, 14869 (2017).2041-1723

【16】T.Dauxois and M.Peyrard, Physics of Solitons, Cambridge University Press, Cambridge (2015).

【17】K.Krupaet al., “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett.118(24), 243901 (2017).0031-9007

【18】P.Marinpalomoet al., “Microresonator-based solitons for massively parallel coherent optical communications,” Nature546, 274–279 (2017).

【19】M. G.Suhet al., “Microresonator soliton dual-comb spectroscopy,” Science354(6312), 600–603 (2016).0036-8075

【20】L. G.Wright, D. N.Christodoulides and F. W.Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science358(6359), 94–97 (2017).0036-8075

【21】J.Javaloyes, M.Marconi and M.Giudici, “Nonlocality induces chains of nested dissipative solitons,” Phys. Rev. Lett.119(3), 033904 (2017).0031-9007

【22】M.Stratmann, T.Pagel and F.Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett.95(14), 143902 (2005).0031-9007

【23】F.Gustaveet al., “Observation of mode-locked spatial laser solitons,” Phys. Rev. Lett.118(4), 044102 (2017).0031-9007

【24】D.Abrahamet al., “Transient dynamics in a self-starting passively mode-locked fiber-based soliton laser,” Appl. Phys. Lett.63(21), 2857–2859 (1993).0003-6951

【25】C.H?nningeret al., “Q-switching stability limits of continuous wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).0740-3224

【26】L.Zinkiewicz, F.Ozimek and P.Wasylczyk, “Witnessing the pulse birth-transient dynamics in a passively mode-locked femtosecond laser,” Laser Phys. Lett.10(12), 125003 (2013).1612-2011

【27】U.Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).

【28】D. R.Solliet al., “Fluctuations and correlations in modulation instability,” Nat. Photonics6, 463–468 (2012).1749-4885

【29】D. R.Solli, J.Chou and B.Jalali, “Amplified wavelength time transformation for real-time spectroscopy,” Nat. Photonics2, 48–51 (2008).1749-4885

【30】G.Herinket al., “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science356(6333), 50–54 (2017).0036-8075

【31】Y.Xuet al., “Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry,” Sci. Rep.6, 27937 (2016).2045-2322

【32】D. R.Solliet al., “Optical rogue waves,” Nature450, 1054–1057 (2007).

【33】T.Godinet al., “Real time noise and wavelength correlations in octave-spanning super continuum generation,” Opt. Express21(15), 18452–18460 (2013).1094-4087

【34】X.Weiet al., “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express25(23), 29098–29120 (2017).1094-4087

【35】P.Ryczkowskiet al., “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics12, 221–227 (2018).1749-4885

【36】A. F. J.Runge, N. G. R.Broderick and M.Erkintalo, “Dynamics of soliton explosions in passively mode-locked fiber lasers,” J. Opt. Soc. Am. B33(1), 46–53 (2016).0740-3224

【37】A. F. J.Runge, N. G. R.Broderick and M.Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica2(1), 36–39 (2015).

【38】M.Liuet al., “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett.41(6), 1181–1184 (2016).0146-9592

【39】A.Chong, L.Wright and F.Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys.78(11), 113901 (2015).0034-4885

【40】E.Kelleher and J.Travers, “Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers,” Opt. Lett.39(6), 1398–1401 (2014).0146-9592

【41】F.Krausz, T.Brabec and C.Spielmann, “Self-starting passive mode locking,” Opt. Lett.16(4), 235–237 (1991).0146-9592

【42】E. P.Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994).

【43】J.Herrmann, “Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers,” Opt. Commun.98(1–3), 111–116 (1993).0030-4018https://doi.org/10.1016/0030-4018(93)90768-Z

【44】J. M.Shiehet al., “Completely self-starting picosecond and femtosecond Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B12(5), 945–949 (1995).0740-3224

【45】J.Soliset al., “Experimental study of a self-starting Kerr-lens mode-locked titanium-doped sapphire laser,” Opt. Commun.123(4–6), 547–552 (1996).0030-4018https://doi.org/10.1016/0030-4018(95)00578-1

【46】J. C.Kuoet al., “Pulse-forming dynamics of a cw passively mode-locked Ti:sapphire/DDI laser,” Opt. Lett.17(15), 334–336 (1992).0146-9592

【47】N. W.Puet al., “Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser,” Opt. Lett.20(2), 163–165 (1995).0146-9592

【48】H.Li, D. G.Ouzounov and F. W.Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett.35(14), 2403–2405 (2010).0146-9592

【49】Y.Yuet al., “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett.110(20), 201107 (2017).0003-6951

【50】J.Penget al., “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys.1, 20 (2018).

【51】J.Peng and H.Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev.12(8), 1800009 (2018).

【52】X.Liu, X.Yao and Y.Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett.121(2), 023905 (2018).0031-9007

【53】Y. C.Tong, L. Y.Chan and H. K.Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett.33(11), 983–985 (1997).

【54】A.Mahjoubfaret al., “Time stretch and its applications,” Nat. Photonics11, 341–351 (2017).1749-4885

【55】O.Svelto, Principles of Lasers, Springer, New York (2010).

【56】L.Larger, B.Penkovsky and Y.Maistrenko, “Virtual chimera states for delayed-feedback systems,” Phys. Rev. Lett.111(5), 054103 (2013).0031-9007

【57】D. V.Churkinet al., “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun.6, 7004 (2015).2041-1723

【58】J. K.Janget al., “Ultraweak long-range interactions of solitons observed over astronomical distances,” Nat. Photonics7, 657–663 (2013).1749-4885

【59】B.Garbinet al., “Topological solitons as addressable phase bits in a driven laser,” Nat. Commun.6, 5915 (2015).2041-1723

【60】A.Bednyakova and S. K.Turitsyn, “Adiabatic soliton laser,” Phys. Rev. Lett.114(11), 113901 (2015).0031-9007

【61】S. M.Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806 (1992).0013-5194

【62】X.Liuet al., “Distributed ultrafast fibre laser,” Sci. Rep.5, 9101 (2015).2045-2322

【63】H. A.Haus and W. S.Wong, “Solitons in optical communications,” Rev. Mod. Phys.68(2), 423–444 (1996).0034-6861

【64】G. P.Agrawal, Nonlinear Fiber Optics, Academic Press, New York (2007).

【65】R.Dunsmuir, “Theory of relaxation oscillations in optical masers,” Int. J. Electron.10(6), 453–458 (1961).0020-7217

【66】M.Leonetti, C.Conti and C.Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5, 615–617 (2011).1749-4885

【67】T.Herret al., “Temporal solitons in optical microresonators,” Nat. Photonics8, 145–152 (2014).1749-4885

【68】X.Liuet al., “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).2045-2322

【69】A. A.Grutter, H. P.Weber and R.Dandliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev.185(2), 629–643 (1969).0031-899X

【70】R. H.Picard and P.Schweitzer, “Theory of intensity correlation measurements of imperfectly mode-locked lasers,” Phys. Rev. A1(6), 1803–1818 (1970).

【71】R.Dandliker, H. P.Weber and A. A.Grutter, “Influence of systematic phase deviations on the output of mode-locked lasers,” Z. Angew. Math. Phys.20(4), 572–574 (1969).

【72】G. P.Agrawal, Applications of Nonlinear Fiber Optics, Academic Press, New York (2008).

【73】G. P.Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett.2(12), 875–877 (1990).1041-1135

【74】X.Liu and B.Lee, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett.15(11), 1549–1551 (2003).1041-1135

引用该论文

Xueming Liu,Yudong Cui. Revealing the behavior of soliton buildup in a mode-locked laser[J]. Advanced Photonics, 2019, 1(1): 016003

Xueming Liu,Yudong Cui. Revealing the behavior of soliton buildup in a mode-locked laser[J]. Advanced Photonics, 2019, 1(1): 016003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF