首页 > 论文 > Advanced Photonics > 1卷 > 1期(pp:16005--1)

Noniterative spatially partially coherent diffractive imaging using pinhole array mask

Noniterative spatially partially coherent diffractive imaging using pinhole array mask

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the far-field diffraction pattern. Our method is based on a pinhole array mask, which is specially designed such that the correlation function in the mask plane can be obtained directly by inverse Fourier transforming the diffraction pattern. Compared to the traditional iterative diffractive imaging methods using spatially partially coherent illumination, our method is noniterative and robust to the degradation of the spatial coherence of the illumination. In addition to diffractive imaging, the proposed method can also be applied to spatial coherence property characterization, e.g., free-space optical communication and optical coherence singularity measurement.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1117/1.ap.1.1.016005

所属栏目:Research Articles

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 11774250 and 91750201), the National Natural Science Fund for Distinguished Young Scholars (No. 11525418), and the sponsorship of Jiangsu Overseas Research and Training Program for Prominent Young and Middle-aged University Teachers and Presidents. This work is also part of the research program “Novel design shapes for complex optical systems,” with Project No. 12797, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO).

收稿日期:2018-06-22

修改稿日期:--

网络出版日期:--

作者单位    点击查看

Xingyuan Lu:Soochow University, School of Physical Science and Technology, Suzhou, China
Yifeng Shao:Delft University of Technology, Optics Research Group, Delft, Netherlands
Chengliang Zhao:Soochow University, School of Physical Science and Technology, Suzhou, ChinaDelft University of Technology, Optics Research Group, Delft, Netherlands
Sander Konijnenberg:Delft University of Technology, Optics Research Group, Delft, Netherlands
Xinlei Zhu:Soochow University, School of Physical Science and Technology, Suzhou, China
Ying Tang:Delft University of Technology, Optics Research Group, Delft, Netherlands
Yangjian Cai:Soochow University, School of Physical Science and Technology, Suzhou, ChinaShandong Normal University, School of Physics and Electronics, Center of Light Manipulation and Application, Jinan, China
H. Paul Urbach:Delft University of Technology, Optics Research Group, Delft, Netherlands

联系人作者:Chengliang Zhao(zhaochengliang@suda.edu.cn)

【1】J.Miaoet al., “Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone,” Phys. Rev. Lett.95(8), 085503 (2005).0031-9007

【2】C.Songet al., “Quantitative imaging of single, unstained viruses with coherent x rays,” Phys. Rev. Lett.101(15), 158101 (2008).0031-9007

【3】J.Miaoet al., “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400(6742), 342–344 (1999).

【4】R. W.Gerchberg, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).0030-4026

【5】J. R.Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982).0003-6935

【6】J. R.Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A4(1), 118–123 (1987).0740-3232

【7】H. M. L.Faulkner and J. M.Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett.93(2), 023903 (2004).0031-9007

【8】J. M.Rodenburget al., “Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett.98(3), 034801 (2007).0031-9007

【9】A. M.Maiden and J. M.Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy109(10), 1256–1262 (2009).0304-3991

【10】N.Nakajima, “Noniterative phase retrieval from a single diffraction intensity pattern by use of an aperture array,” Phys. Rev. Lett.98(22), 223901 (2007).0031-9007

【11】C. S.Guoet al., “Real-time coherent diffractive imaging with convolution-solvable sampling array,” Opt. Lett.35(6), 850–852 (2010).0146-9592

【12】A. P.Konijnenberget al., “A non-iterative method for phase retrieval and coherence characterization by focus variation using a fixed star-shaped mask,” Opt. Express26(7), 9332–9343 (2018).1094-4087

【13】A. P.Konijnenberg, W. M. J.Coene and H. P.Urbach, “Non-iterative phase retrieval by phase modulation through a single parameter,” Ultramicroscopy174, 70–78 (2017).0304-3991

【14】Y.Shaoet al., “Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography,” Opt. Express26(4), 4479–4490 (2018).1094-4087

【15】L. W.Whiteheadet al., “Diffractive imaging using partially coherent x rays,” Phys. Rev. Lett.103(24), 243902 (2009).0031-9007

【16】S.Flewettet al., “Extracting coherent modes from partially coherent wavefields,” Opt. Lett.34(14), 2198–2200 (2009).0146-9592

【17】P.Thibault and A.Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature494(7435), 68–71 (2013).

【18】J. N.Clarket al., “Continuous scanning mode for ptychography,” Opt. Lett.39(20), 6066–6069 (2014).0146-9592

【19】J. N.Clarket al., “Dynamic imaging using ptychography,” Phys. Rev. Lett.112(11), 113901 (2014).0031-9007

【20】B.Chenet al., “Diffraction imaging: the limits of partial coherence,” Phys. Rev. B86(23), 235401 (2012).

【21】P.Liet al., “Breaking ambiguities in mixed state ptychography,” Opt. Express24(8), 9038–9052 (2016).1094-4087

【22】N.Burdetet al., “Evaluation of partial coherence correction in x-ray ptychography,” Opt. Express23(5), 5452–5467 (2015).1094-4087

【23】M.Lurie, “Fourier-transform holograms with partially coherent light: holographic measurement of spatial coherence,” J. Opt. Soc. Am.58(5), 614–619 (1968).0030-3941

【24】D. H.Parks, X.Shi and S. D.Kevan, “Partially coherent x-ray diffractive imaging of complex objects,” Phys. Rev. A89(6), 063824 (2014).

【25】I.McNultyet al., “High-resolution imaging by Fourier transform x-ray holography,” Science256(5059), 1009–1012 (1992).0036-8075

【26】S.Eisebittet al., “Lensless imaging of magnetic nanostructures by x-ray spectro-holography,” Nature432(7019), 885–888 (2004).

【27】L. M.Stadleret al., “Hard x ray holographic diffraction imaging,” Phys. Rev. Lett.100(24), 245503 (2008).0031-9007

【28】P.Gaoet al., “Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement,” Opt. Lett.36(21), 4305–4307 (2011).0146-9592

【29】D. M.Palacioset al., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett.92(14), 143905 (2004).0031-9007

【30】W.Wanget al., “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett.96(7), 073902 (2006).0031-9007

【31】L. C.Andrews and R. L.Phillips, Laser Beam Propagation Through Random Media, Vol.?152, SPIE Press, Bellingham, Washington (2005).

【32】Y.Caiet al., “Generation of partially coherent beams,” Prog. Opt.62, 157–223 (2017).0079-6638

【33】Y.Chen and Y.Cai, “Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam,” Opt. Lett.39(9), 2549–2552 (2014).0146-9592

【34】Y.Chenet al., “Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam,” Opt. Express22(5), 5826–5838 (2014).1094-4087

【35】F.Wang and Y.Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A24(7), 1937–1944 (2007).0740-3232

【36】R. H.Brown and R. Q.Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).

【37】F.Wanget al., “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett.38(11), 1814–1816 (2013).0146-9592

【38】J.Wanget al., “Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters,” Sci. Rep.5, 15826 (2015).2045-2322

引用该论文

Xingyuan Lu,Yifeng Shao,Chengliang Zhao,Sander Konijnenberg,Xinlei Zhu,Ying Tang,Yangjian Cai,H. Paul Urbach. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 2019, 1(1): 016005

Xingyuan Lu,Yifeng Shao,Chengliang Zhao,Sander Konijnenberg,Xinlei Zhu,Ying Tang,Yangjian Cai,H. Paul Urbach. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 2019, 1(1): 016005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF