PFWG改进的CNN多光谱遥感图像分类
PFWG Improved CNN Multispectra Remote Sensing Image Classification
摘要
为了实现在遥感图像处理过程中准确地提取到有效地物信息, 缩短分类用时, 将卷积神经网络(CNN)模型引入遥感图像地物分类, 首先提出由图片模糊加权平均(PFWG)改进的CNN分类方法, 利用模糊几何聚类算法作为预处理单元对实验样本进行特征规划, 并对遥感地物信息进行多源特征决策, 简化了分类过程, 加快了CNN模型的收敛速度。实验结果表明, 利用PFWG改进的CNN分类方法总体分类精度达到了93.73%; Kappa系数为0.94。该方法有效地弥补了CNN自身对遥感图像分类不够细腻、表达效果差的缺点, 较好地完成了多光谱遥感图像分类任务, 同时具备一定抗干扰能力。
Abstract
In order to accurately achieve the effective ground information in the process of remote sensing image processing and shorten the classification time, the convolutional neural networks (CNN) model is introduced into the classification of remote sensing image features. First, the picture fuzzy weighted average (PFWG) improved CNN classification method is proposed. The fuzzy geometric clustering algorithm is used as a pre-processing unit to characterize the experimental samples, and for multi-source feature decision-making for remote sensing ground information. The classification process is simplified and the convergence of the CNN model is speeded up. The experimental results show that using PFWG improved CNN classification method, the overall classification accuracy reaches 93.73%, and the Kappa coefficient is 0.94. This method effectively compensates for the shortcoming of CNN itself which is not good enough for classification and has poor expression performance of remote sensing images. It has successfully completed an efficient classification task and has a certain anti-jamming capability.
中图分类号:TP751.1
所属栏目:图像处理
基金项目:国家自然科学基金(61373112)、住房和城乡建设部科学技术项目计(2016-R2-045)、陕西省自然科学基础研究资金(2014JM8348)
收稿日期:2018-06-14
修改稿日期:2018-07-14
网络出版日期:2018-08-15
作者单位 点击查看
樊潭飞:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
贠卫国:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
王稚慧:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
【1】Zou R X. Object-oriented high spatial resolution remote sensing image classification using multi-feature[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 17-25.
邹瑞雪. 基于多特征的面向对象高分辨率遥感图像分类[D]. 成都: 电子科技大学, 2017: 17-25.
【2】Wang Z W, Sun J J, Yu Z Y, et al. Review of remote sensing image classification based on support vector machine[J]. Computer Science, 2016, 43(9): 11-17, 31.
王振武, 孙佳骏, 于忠义, 等. 基于支持向量机的遥感图像分类研究综述[J]. 计算机科学, 2016, 43(9): 11-17, 31.
【3】Banerjee B, Krishna Moohan B. A novel graph based fuzzy clustering technique for unsupervised classification of remote sensing images[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, II-8: 165-170.
【4】Bu X B, Gong Z, Li H. Remote sensing image classification of improved BP neural network based on the genetic algorithm[J]. Journal of Anhui Agricultural Sciences, 2013, 41(33): 13056-13058,13079.
卜晓波, 龚珍, 黎华. 基于遗传算法改进BP神经网络的遥感影像分类研究[J]. 安徽农业科学, 2013, 41(33): 13056-13058, 13079.
【5】Zhao S. Remote sensing image classification method based on convolutional neural networks[D]. Beijing: China University of Geosciences, 2015: 14-27.
赵爽. 基于卷积神经网络的遥感图像分类方法研究[D]. 北京: 中国地质大学, 2015: 14-27.
【6】Fu X L, Li L P, Mao K B, et al. Remote sensing image classification based on CNN model[J]. Chinese High Technology Letters, 2017(3): 203-212.
付秀丽, 黎玲萍, 毛克彪, 等. 基于卷积神经网络模型的遥感图像分类[J]. 高技术通讯, 2017(3): 203-212.
【8】Li J, Huang X, Gamba P, et al. Multiple feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1592-1606.
【9】Wang M W. Image recognition by multiple classifer[D]. Beijing: Beijing University of Posts and Telecommunications, 2017: 11-14.
王孟文. 遥感图像识别分类技术研究[D]. 北京: 北京邮电大学, 2017: 11-14.
【10】Wang C Y. Hesitant fuzzy set and picture fuzzy set with their application research[D]. Changsha: Hunan University, 2015: 15-24.
王春勇. 犹豫模糊集和Picture模糊集理论与应用研究[D]. 长沙: 湖南大学, 2015: 15-24.
【11】Torra V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6): 529-539.
【12】Singh P. Correlation coefficients for picture fuzzy sets[J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2015(2): 591-604.
【13】Wu Z W. Application research of convolution neural network in image classification[D]. Chengdu: University of Electronic Science and Technology, 2015: 12-15.
吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都: 电子科技大学, 2015: 12-15.
【14】Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 31(6): 456-473.
【16】Zhang K, Hei B Q, Zhou Z, et al. CNN with coefficient of variation-based dimensionality reduction for hyperspectral remote sensing images classification[J]. Journal of Remote Sensing, 2018, 22(1): 87-96.
张康, 黑保琴, 周壮, 等. 变异系数降维的CNN高光谱遥感图像分类[J]. 遥感学报, 2018, 22(1): 87-96.
【18】Lillesand T M, Kiefer R W, Chipman J W. Remote sensing and image interpretation[M]. Peng W L, Yu X C, He H, et al. Transl. Beijing: Electronic Industry Press, 2015: 366-383.
利拉桑德, 基弗, 奇普曼. 遥感与图像解译[M]. 彭望琭, 余先川, 贺辉, 等译. 北京: 电子工业出版社, 2015: 366-383.
【20】Hu W, Huang Y Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 1-12.
引用该论文
Wang Min,Fan Tanfei,Yun Weiguo,Wang Zhihui. PFWG Improved CNN Multispectra Remote Sensing Image Classification[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031003
王民,樊潭飞,贠卫国,王稚慧. PFWG改进的CNN多光谱遥感图像分类[J]. 激光与光电子学进展, 2019, 56(3): 031003
被引情况
【1】龚循强,刘星雷,鲁铁定,刘丹. 基于规则验证点的面向对象分类精度评价. 激光与光电子学进展, 2020, 57(24): 241102--1
【2】黄婉蓉,何凯,刘坤,高圣楠. 基于注意力机制的手写体中文字符识别. 激光与光电子学进展, 2020, 57(8): 81002--1
【3】龚循强,张方泽,鲁铁定,陈志高. 基于中位数绝对偏差的异常训练样本探测方法. 激光与光电子学进展, 2020, 57(23): 231202--1
【4】杨斌,王翔. 基于深度残差去噪网络的遥感融合图像质量提升. 激光与光电子学进展, 2019, 56(16): 161009--1