首页 > 论文 > 光学学报 > 39卷 > 2期(pp:223002--1)

多缝隙蝶形偶极子纳米天线的设计及吸收特性

Design and Absorption Characteristics of Multi-Slot Butterfly Dipole Nano-Antenna

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对单一结构纳米天线吸收率不高和波段较窄的缺点, 结合多缝隙结构和蝶形偶极子, 提出了一种多缝隙蝶形偶极子纳米天线。多缝隙蝶形偶极子是由Au纳米蝶形偶极子刻蚀多条缝隙构成的, 该结构能同时实现尖端近场耦合、光栅耦合以及不同介质间的杂化耦合, 这三种耦合的共同作用可以在宽波段内有效提高吸收率。采用时域有限差分方法分析了宽波段下该纳米天线的吸收性能, 数值分析表明:在400~1800 nm波段, 多缝隙蝶形偶极子纳米天线的吸收特性曲线出现多个吸收波峰, 吸收峰值最高可达98.4%, 平均吸收率为84.1%。该天线的吸收性能明显优于蝶形偶极子纳米天线, 在不同偏振状态以及不同角度入射光下, 该天线均能在宽波段内保持较好的吸收性能。

Abstract

Aiming at the shortcomings of low absorptivity and narrow working band for a single structure nano-antenna, we propose a multi-slot butterfly dipole nano-antenna by the fusion of the multi-slot structure and the butterfly dipole. The multi-slot butterfly dipole is formed from an Au nano-butterfly dipole etched by multiple slots. This structure can simultaneously realize the near-field coupling of tips, the grating coupling, and the hybrid coupling among different media. The coaction of these three couplings can effectively improve the absorptivity in a wide band. The absorption performance of this nano-antenna in a wide band is analyzed by the finite-difference time-domain method. The numerical analyses show that several absorption peaks exist in the absorption characteristic curve of this multi-slot butterfly dipole nano-antenna in the 400-1800 nm band, and the maximum and the average absorptivities are 98.4% and 84.1%, respectively. The absorption performance of the proposed nano-antenna is obviously superior to that of the butterfly dipole nano-antenna. This antenna can keep a stable absorption performance in a wide band under different polarization states and different incident angles of light.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.1

DOI:10.3788/aos201939.0223002

所属栏目:光学器件

基金项目:江西省杰出青年人才资助计划(20171BCB23062)、江西省自然科学基金(20171BAB204022)、江西省教育厅科学技术研究重点项目(GJJ170360)

收稿日期:2018-08-08

修改稿日期:2018-08-28

网络出版日期:2018-10-08

作者单位    点击查看

刘媛媛:华东交通大学信息工程学院, 江西 南昌 330013
李康康:华东交通大学信息工程学院, 江西 南昌 330013
田晓梦:华东交通大学信息工程学院, 江西 南昌 330013
朱路:华东交通大学信息工程学院, 江西 南昌 330013

联系人作者:朱路(luyuanwanwan@163.com); 刘媛媛(lyy.78@163.com);

【1】Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

【2】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【3】Liang Q Q. Study on plasmon hybridization and optical absorption properties of metallic nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2015.
梁秋群. 金属纳米结构表面等离激元杂化和吸收特性的研究[D]. 北京: 中国科学院大学, 2015.

【4】Huang Q, Wang M, Li A, et al. Symmetrical long range surface plasmon resonance sensing system[J]. Optics and Precision Engineering, 2014, 22(1): 44-49.
黄强, 王敏, 李昂, 等. 对称型长程表面等离子体共振分析系统[J]. 光学 精密工程, 2014, 22(1): 44-49.

【5】Eizner E, Avayu O, Ditcovski R, et al. Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons[J]. Nano Letters, 2015, 15(9): 6215-6221.

【6】Goodarzi M, Fakharzadeh J A. Shape and size determination of plasmonic nano particles using particle swarm optimization algorithm based absorption coefficient[J]. Optik-International Journal for Light and Electron Optics, 2017, 130: 44-49.

【7】Robak E, Grzes'kiewicz B, Kotkowiak M. Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications[J]. Optical Materials, 2014, 37: 104-109.

【8】Cakmakyapan S, Cinel N A, Cakmak A O, et al. Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas[J]. Optics Express, 2014, 22(16): 19504-19512.

【9】El-Toukhy Y M, Hussein M, Hameed M F O, et al. Optimized tapered dipole nanoantenna as efficient energy harvester[J]. Optics Express, 2016, 24(14): A1107-A1122.

【10】Zhu L, Wang Y, Liu Y Y, et al. Design of slot Yagi-Uda nanoantennas and their broadband absorption properties[J]. Acta Photonica Sinica, 2016, 45(10): 1024002.
朱路, 王杨, 刘媛媛, 等. 缝隙八木纳米天线设计及宽波段吸收特性[J]. 光子学报, 2016, 45(10): 1024002.

【11】Liu Y Y, Xiong G, Wang Y, et al. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Optics and Precision Engineering, 2017, 25(8): 2155-2164.
刘媛媛, 熊广, 王杨, 等. 多谐振U形缝隙纳米天线设计及吸收特性[J]. 光学 精密工程, 2017, 25(8): 2155-2164.

【12】Xu Z C, Li N, Duan B Y. Design of broadband spiral nanoantenna based on solar energy harvesting[J]. Acta Optica Sinica, 2017, 37(8): 0826003.
徐志超, 李娜, 段宝岩. 基于太阳能收集的宽频螺旋纳米天线设计[J]. 光学学报, 2017, 37(8): 0826003.

【13】Li Y Q, Guo Y J, Su L, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region[J]. Optics and Precision Engineering, 2014, 22(11): 2998-3003.
黎永前, 郭勇君, 苏磊, 等. 矩形块微纳结构材料在红外波段的偏振光吸收[J]. 光学 精密工程, 2014, 22(11): 2998-3003.

【14】Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 2013, 21(7): 9144-9155.

【15】Ono M, Kuramochi E, Zhang G Q, et al. Nanowire-nanoantenna coupled system fabricated by nanomanipulation[J]. Optics Express, 2016, 24(8): 8647-8659.

【16】Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3): 287-324.
王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.

【17】Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 2001, 293(5534): 1455-1457.

引用该论文

Liu Yuanyuan,Li Kangkang,Tian Xiaomeng,Zhu Lu. Design and Absorption Characteristics of Multi-Slot Butterfly Dipole Nano-Antenna[J]. Acta Optica Sinica, 2019, 39(2): 0223002

刘媛媛,李康康,田晓梦,朱路. 多缝隙蝶形偶极子纳米天线的设计及吸收特性[J]. 光学学报, 2019, 39(2): 0223002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF