光学学报, 2019, 39 (2): 0223002, 网络出版: 2019-05-10  

多缝隙蝶形偶极子纳米天线的设计及吸收特性 下载: 1121次

Design and Absorption Characteristics of Multi-Slot Butterfly Dipole Nano-Antenna
作者单位
华东交通大学信息工程学院, 江西 南昌 330013
摘要
针对单一结构纳米天线吸收率不高和波段较窄的缺点,结合多缝隙结构和蝶形偶极子,提出了一种多缝隙蝶形偶极子纳米天线。多缝隙蝶形偶极子是由Au纳米蝶形偶极子刻蚀多条缝隙构成的,该结构能同时实现尖端近场耦合、光栅耦合以及不同介质间的杂化耦合,这三种耦合的共同作用可以在宽波段内有效提高吸收率。采用时域有限差分方法分析了宽波段下该纳米天线的吸收性能,数值分析表明:在400~1800 nm波段,多缝隙蝶形偶极子纳米天线的吸收特性曲线出现多个吸收波峰,吸收峰值最高可达98.4%,平均吸收率为84.1%。该天线的吸收性能明显优于蝶形偶极子纳米天线,在不同偏振状态以及不同角度入射光下,该天线均能在宽波段内保持较好的吸收性能。
Abstract
Aim

ing at the shortcomings of low absorptivity and narrow working band for a single structure nano-antenna, we propose a multi-slot butterfly dipole nano-antenna by the fusion of the multi-slot structure and the butterfly dipole. The multi-slot butterfly dipole is formed from an Au nano-butterfly dipole etched by multiple slots. This structure can simultaneously realize the near-field coupling of tips, the grating coupling, and the hybrid coupling among different media. The coaction of these three couplings can effectively improve the absorptivity in a wide band. The absorption performance of this nano-antenna in a wide band is analyzed by the finite-difference time-domain method. The numerical analyses show that several absorption peaks exist in the absorption characteristic curve of this multi-slot butterfly dipole nano-antenna in the 400-1800 nm band, and the maximum and the average absorptivities are 98.4% and 84.1%, respectively. The absorption performance of the proposed nano-antenna is obviously superior to that of the butterfly dipole nano-antenna. This antenna can keep a stable absorption performance in a wide band under different polarization states and different incident angles of light.

刘媛媛, 李康康, 田晓梦, 朱路. 多缝隙蝶形偶极子纳米天线的设计及吸收特性[J]. 光学学报, 2019, 39(2): 0223002. Yuanyuan Liu, Kangkang Li, Xiaomeng Tian, Lu Zhu. Design and Absorption Characteristics of Multi-Slot Butterfly Dipole Nano-Antenna[J]. Acta Optica Sinica, 2019, 39(2): 0223002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!