首页 > 论文 > 光学学报 > 39卷 > 2期(pp:212007--1)

基于多传感器的三维目标位姿测量方法

Pose Measurement Method of Three-Dimensional Object Based on Multi-Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于多传感器的三维目标位姿测量方法, 该方法利用多传感器技术, 充分发挥深度相机和高分辨率电荷耦合器件(CCD)相机各自的优势, 提高了测量的稳健性和效率。利用物体与其固定平面之间的关系, 在点云中粗略定位出目标区域, 通过预先标定信息将目标区域转换至灰度图像空间。在灰度图像中, 利用线段检测器(LSD)算法外加特征约束, 筛选出4条目标直线, 利用透视4点(P4P)算法求解出目标的六维位姿。实验验证了该算法的有效性, 其测量效率远优于经典模板匹配方法。

Abstract

A method based on multi-sensor to measure the pose of a three-dimensional object is proposed. We employ multi-sensor technology to make the advantages of the depth camera and the high-resolution charge-couple device (CCD) camera, improving the robustness and efficiency of measurement. The target area is coarsely located in the point cloud based on the relationship between the object and its fixed board, and the region is converted to gray image space by the prior calibration information. In the gray image, four target straight lines are extracted by the Line Segment Detector (LSD) and feature constraints. The perspective 4 point (P4P) algorithm is utilized to calculate the six-dimensional pose of the object. The experiment verifies the validity of the algorithm and the measurement efficiency of the algorithm is much better than that of the classical template matching method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/aos201939.0212007

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(U1713216)

收稿日期:2018-08-16

修改稿日期:2018-09-27

网络出版日期:2018-10-08

作者单位    点击查看

潘旺:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院大学, 北京 100049
朱枫:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院光电信息处理重点实验室, 辽宁 沈阳 110016辽宁省图像理解与视觉计算重点实验室, 辽宁 沈阳 110016
郝颖明:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院光电信息处理重点实验室, 辽宁 沈阳 110016辽宁省图像理解与视觉计算重点实验室, 辽宁 沈阳 110016
张丽敏:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院大学, 北京 100049

联系人作者:朱枫(fzhu@sia.cn); 潘旺(panwang@sia.cn);

【1】Bay H,Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.

【2】Hinterstoisser S, Benhimane S, Navab N. N3M: natural 3D markers for real-time object detection and pose estimation[C]. IEEE 11th International Conference on Computer Vision, 2007: 1-7.

【3】Lepetit V, Fua P. Keypoint recognition using randomized trees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1465-1479.

【4】Ulrich M, Wiedemann C, Steger C. CAD-based recognition of 3D objects in monocular images[C]. IEEE International Conference on Robotics and Automation, 2009: 1191-1198.

【5】Ulrich M, Wiedemann C, Steger C. Combining scale-space and similarity-based aspect graphs for fast 3D object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1902-1914.

【6】Hinterstoisser S, Holzer S, Cagniart C, et al. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]. International Conference on Computer Vision, 2011: 858-865.

【7】Hinterstoisser S, Cagniart C, Ilic S, et al. Gradient response maps for real-time detection of textureless objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 876-888.

【8】Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.

【9】Zhang S J, Cao X B, Zhang F, et al. Monocular vision-based iterative pose estimation algorithm from corresponding feature points[J]. Science China Information Sciences, 2010, 53(8): 1682-1696.

【10】Zhu F, Yu F S, Wu Y M, et al. Analysis of calibration precision of camera attitude angles[J]. Acta Optica Sinica, 2018, 38(11): 1115005.
朱帆, 于芳苏, 吴易明, 等. P4P法相机姿态标定精度分析[J]. 光学学报, 2018, 38(11): 1115005.

【11】von Gioi R G, Jakubowicz J, Morel J M, et al. LSD: a line segment detector[J]. Image Processing on Line, 2012, 2: 35-55.

【12】Zhang H J, Fang Z J, Yang G L. RGB-D visual odometry in dynamic environments using line features[J]. Robot, 2018, 40(5): 1-8.
张慧娟, 方灶军, 杨桂林. 动态环境下基于线特征的RGB-D视觉里程计[J]. 机器人, 2018, 40(5): 1-8.

【13】Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

【14】Song J H, Ren Y J, Yang S R, et al. Extrinsic parameter calibration method based on substitutable target sphere for vision sensors[J]. Acta Optica Sinica, 2017, 37(9): 0915003.
宋佳慧, 任永杰, 杨守瑞, 等. 基于合作靶球的视觉传感器外参标定方法[J]. 光学学报, 2017, 37(9): 0915003.

【15】Li R Z, Liu Y Y, Yang M, et al. Three-dimensional point cloud segmentation algorithm based on improved region growing[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051502.
李仁忠, 刘阳阳, 杨曼, 等. 基于改进的区域生长三维点云分割[J]. 激光与光电子学进展, 2018, 55(5): 051502.

【16】Rusu R B, Cousins S. 3D is here: point cloud library (PCL)[C]. IEEE International Conference on Robotics and Automation, 2011: 1-4.

【17】Choi S, Kim T, Yu W. Performance evaluation of RANSAC family[C]. Proceedings of the British Machine Vision Conference, 2009: 355.

【18】Jin J J, Lu W L, Guo X T, et al. Position registration method of simultaneous phase-shifting interferograms based on SURF and RANSAC algorithms[J]. Acta Optica Sinica, 2017, 37(10): 1012002.
靳京京, 卢文龙, 郭小庭, 等. 基于SURF和RANSAC算法的同步相移干涉图位置配准方法[J]. 光学学报, 2017, 37(10): 1012002.

【19】Zeineldin R A, El-Fishawy N A. Fast and accurate ground plane detection for the visually impaired from 3D organized point clouds[C]. 2016 SAI Computing Conference, 2016: 373-379.

引用该论文

Pan Wang,Zhu Feng,Hao Yingming,Zhang Limin. Pose Measurement Method of Three-Dimensional Object Based on Multi-Sensor[J]. Acta Optica Sinica, 2019, 39(2): 0212007

潘旺,朱枫,郝颖明,张丽敏. 基于多传感器的三维目标位姿测量方法[J]. 光学学报, 2019, 39(2): 0212007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF