首页 > 论文 > 光学学报 > 39卷 > 2期(pp:227001--1)

基于轨道角动量的循环差分相移量子密钥分发

Round-Robin Differential Phase Shift Quantum Key Distribution Protocol Based on Orbital Angular Momentum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于标记配对相干态(HPCS)和轨道角动量的循环差分相移量子密钥分发(RRDPS-QKD)方案, 以光子轨道角动量作为信息载体, 使用多种不同拓扑荷的轨道角动量的叠加态进行RRDPS-QKD的信息编码, 显著提高了密钥生成率。使用HPCS作为量子光源, 有效减小了空脉冲和多光子脉冲的比例, 提高了密钥生成率。分析了光源在湍流大气信道中的传输特性, 考虑了信道衰减和大气湍流对系统性能的影响。

Abstract

A round-robin differential phase shift quantum key distribution (RRDPS-QKD) protocol based on heralded pair-coherent source (HPCS) and orbital angular momentum is proposed. The superposition state consisting of multiple orbital angular momentum states with different topological charges is used as the information carriers to remarkably increase the key generation rate. HPCS is used as the quantum source to decrease the ratio of vacuum and multi-photon pulses and to dramatically increase the key generation rate. Moreover, the propagation characteristics in the turbulent atmosphere channel are analyzed, and the influence of both channel attenuation and atmospheric turbulence on the protocol is considered.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

DOI:10.3788/aos201939.0227001

所属栏目:量子光学

基金项目:国家自然科学基金(61475075)、国家电网科技项目(SGRIXTKJ[2017]459)

收稿日期:2018-08-21

修改稿日期:2018-09-17

网络出版日期:2018-10-08

作者单位    点击查看

沈志冈:南京邮电大学信号处理与传输研究院, 江苏 南京 210003
王乐:南京邮电大学信号处理与传输研究院, 江苏 南京 210003
毛钱萍:南京邮电大学信号处理与传输研究院, 江苏 南京 210003
赵生妹:南京邮电大学信号处理与传输研究院, 江苏 南京 210003

联系人作者:赵生妹(zhaosm@njupt.edu.cn); 沈志冈(shenzg@126.com);

【1】Zhao S M, Zheng B Y. Quantum information processing technology[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2010.
赵生妹, 郑宝玉. 量子信息处理技术[M]. 北京: 北京邮电大学出版社, 2010.

【2】Zhao G H, Zhao S H, Yao Z S, et al. Effect of the pulse broadening caused by atmosphere on satellite based quantum key distribution[J]. Acta Optica Sinica, 2012, 32(11): 1127001.
赵顾颢, 赵尚弘, 幺周石, 等. 大气导致的脉冲展宽对星载量子密钥分发的影响[J]. 光学学报, 2012, 32(11): 1127001.

【3】Hu K, Mao Q P, Zhao S M. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica, 2017, 37(5): 0527002.
胡康, 毛钱萍, 赵生妹. 基于预报单光子源和探测器诱骗态的循环差分相移量子密钥分发协议[J]. 光学学报, 2017, 37(5): 0527002.

【4】Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 2005, 94(23): 230503.

【5】Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504.

【6】Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 1986, 57(7): 827-830.

【7】Usenko V C, Paris M G A. Multiphoton communication in lossy channels with photon-number entangled states[J]. Physical Review A, 2007, 75(4): 043812.

【8】Zhang S L, Zou X B, Li C F, et al. A universal coherent source for quantum key distribution[J]. Chinese Science Bulletin, 2009, 54(11): 1863-1871.

【9】Wang L, Zhao S M. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 2017, 16(4): 100.

【10】Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509(7501): 475-478.

【11】Takesue H, Sasaki T, Tamaki K, et al. Experimental quantum key distribution without monitoring signal disturbance[J]. Nature Photonics, 2015, 9(12): 827-831.

【12】Zhang Z, Yuan X, Cao Z, et al. Practical round-robin differential-phase-shift quantum key distribution[J]. New Journal of Physics, 2017, 19(3): 033013.

【13】Mao Q P, Wang L, Zhao S M. Plug-and-play round-robin differential phase-shift quantum key distribution[J]. Scientific Reports, 2017, 7: 15435.

【14】Mirhosseini M, Magaa-Loaiza O S, O’Sullivan M N, et al. High-dimensional quantum cryptography with twisted light[J]. New Journal of Physics, 2015, 17(3): 033033.

【15】Horikiri T, Kobayashi T. Decoy state quantum key distribution with a photon number resolved heralded single photon source[J]. Physical Review A, 2006, 73(3): 032331.

【16】Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601.

【17】Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4: 2781.

【18】Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307.

【19】Liu Z H, Chen H W. Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad[J]. Chinese Physics B, 2016, 25(8): 080308.

【20】Wang L, Zhou Y Y, Zhou X J, et al. Research on air-water quantum key distribution based on irregular sea surface with foams[J]. Acta Optica Sinica, 2018, 38(10): 1027002.
王潋, 周媛媛, 周学军, 等. 泡沫覆盖不规则海面的空-水量子密钥分发研究[J]. 光学学报, 2018, 38(10): 1027002.

【21】Ke X Z, Wang X Y. Experimental study on the correction of wavefront distortion for vortex beam[J]. Acta Optica Sinica, 2018, 38(3): 0328018.
柯熙政, 王夏尧. 涡旋光波前畸变校正实验研究[J]. 光学学报, 2018, 38(3): 0328018.

引用该论文

Shen Zhigang,Wang Le,Mao Qianping,Zhao Shengmei. Round-Robin Differential Phase Shift Quantum Key Distribution Protocol Based on Orbital Angular Momentum[J]. Acta Optica Sinica, 2019, 39(2): 0227001

沈志冈,王乐,毛钱萍,赵生妹. 基于轨道角动量的循环差分相移量子密钥分发[J]. 光学学报, 2019, 39(2): 0227001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF