首页 > 论文 > 中国激光 > 46卷 > 2期(pp:201001--1)

调制光栅Y分支可调谐激光器高精准波长调谐特性

High Precision and Accuracy Wavelength Tuning Characteristics of Modulated Grating Y-Branch Tunable Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

搭建了调制光栅Y分支(MGY)可调谐激光器高精准波长调谐系统,实现了粗扫描结合细扫描的高精度波长扫描标定。在此基础上,对MGY激光器输出波长以及内置法布里-珀罗(F-P)标准具的温度漂移特性进行分析,发现MGY激光器输出波长与温度具有良好的线性关系,且其输出波长曲线的斜率不变,截距随温度线性变化。研究了基于外部气体吸收基准的高精准波长校准方法,并进行实验测试。研究结果表明,在-25~+75 ℃温度范围内,波长扫描范围为40 nm时,所搭建系统的调谐线性度优于0.9999,调谐波长精度优于0.18 pm,准确度优于0.12 pm。

Abstract

A high precision and accuracy wavelength tunable system for a modulated grating Y-branch (MGY) tunable laser is built. The high-precision wavelength scanning and calibration are realized by coarse scanning and fine scanning. Based on this, the temperature drift characteristics of the output wavelength and the internal Fabry-Perot (F-P) etalon are tested. It is found that there exists a good linear relationship between the output wavelength of this MGY laser and temperature, whose slope is constant. The intercept varies linearly with temperature. A high precision and accuracy wavelength calibration method based on external gas absorption reference is researched and its experimental test is conducted. The research results show that within the temperature range of -25-+75 ℃ and the wavelength scanning range of 40 nm, the established system possesses a tuning curve linearity better than 0.9999, a tuning wavelength precision better than 0.18 pm, and an accuracy better than 0.12 pm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.4

DOI:10.3788/cjl201946.0201001

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(U1637106,61227902)、创新团队发展计划(IRT1203)

收稿日期:2018-08-20

修改稿日期:2018-09-25

网络出版日期:2018-10-24

作者单位    点击查看

郑胜亨:北京航空航天大学仪器科学与光电工程学院, 北京 100191
杨远洪:北京航空航天大学仪器科学与光电工程学院, 北京 100191

联系人作者:杨远洪(yhyang@buaa.edu.cn)

【1】Coldren L A, Fish G A, Akulova Y, et al. Tunable semiconductor lasers: a tutorial[J]. Journal of Lightwave Technology, 2004, 22(1): 193-202.

【2】Measures R M,Ohn M M, Huang S Y, et al. Tunable laser demodulation of various fiber Bragg grating sensing modalities[J]. Smart Materials and Structures, 1998, 7(2): 237-247.

【3】Kan R F, Liu W Q, Zhang Y J, et al. Tunable diode laser absorption spectrometer monitors the ambient methane with high sensitivity[J]. Chinese Journal of Lasers, 2005, 32(9): 1217-1220.
阚瑞峰, 刘文清, 张玉钧, 等. 可调谐二极管激光吸收光谱法监测环境空气中甲烷的浓度变化[J]. 中国激光, 2005, 32(9): 1217-1220.

【4】Cui W, Su J J, Jiang P P, et al. High-resolution multiplexed fiber Bragg grating wavelength interrogation system based on tunable LD[J]. Acta Photonica Sinica, 2016, 45(7): 0706003.
崔巍, 苏建加, 姜培培, 等. 基于可调谐半导体激光器的高分辨率多路复用光纤光栅波长解调系统[J]. 光子学报, 2016, 45(7): 0706003.

【5】Li Z J, Chen W G, Ji Y, et al. Trace gas measurement method based on dual wavelength modulation of distributed feedback laser[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111404.
李志军, 陈伟根, 季焱, 等. 基于分布反馈激光器双波长调制的微量气体测量方法[J]. 激光与光电子学进展, 2017, 54(11): 111404.

【6】Yan L S, Yi A L, Pan W, et al. A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser[J]. IEEE Photonics Technology Letters, 2010, 22(18): 1391-1393.

【7】Wang Q, Guo J J, Chen W, et al. Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth[J]. Chinese Journal of Lasers, 2017, 44(1): 0101004.
王琪, 郭锦锦, 陈伟, 等. 功率稳定且波长可调谐的窄线宽分布式反馈半导体激光器[J]. 中国激光, 2017,44(1): 0101004.

【8】Larson M C, Akulova Y A, Coldren C W, et al. High performance widely-tunable SG-DBR lasers[J]. Proceedings of SPIE, 2003, 4995: 66-81.

【9】Xu Y B. Study of tunable semiconductor laser technology and its applications in the fiber optic sensing[D]. Jinan: Shandong University, 2016.
徐迎彬. 扫描半导体激光器技术研究及在光纤传感中的应用[D]. 济南: 山东大学, 2016.

【10】Wesstrom J O, Hammerfeldt S, Buus J, et al. Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection[C]. IEEE International Semiconductor Laser Conference, 2002: 99-100.

【11】Wesstrom J O, Sarlet G, Hammerfeldt S, et al. State-of-the-art performance of widely tunable modulated grating Y-branch lasers[C]. IEEE Optical Fiber Communication Conference, 2004: 389.

【12】Isaksson M, Chacinski M, Kjebon O, et al. 10 Gb/s direct modulation of 40 nm tunable modulated-grating Y-branch laser[C]. Optical Fiber Communication Conference, 2005: OTuE2.

【13】Müller M S, Hoffmann L, Bodendorfer T, et al. Fiber-optic sensor interrogation based on a widely tunable monolithic laser diode[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(3): 696-703.

【14】Du Z H, Sui G H, Gao C. Research on SGDBR light source used in fiber Bragg grating interrogator[J]. Metrology & Measurement Technology, 2017, 37(6): 15-19.
杜泽翰, 隋广慧, 高超. 用于光纤光栅解调仪表的SGDBR光源研究[J]. 计测技术, 2017, 37(6): 15-19.

【15】Finisar. Application note AN-2095: controlling the S7500 CW tunable laser[EB/OL]. (2011-11-09)[2018-10-16]. https:∥www.finisar.com/communication-components/s7500.

【16】Jiang J F, He P, Liu T G, et al. Research of temperature-stable fiber Bragg grating sensing demodulation based on composite wavelength references[J]. Acta Optica Sinica, 2015, 35(10): 1006005.
江俊峰, 何盼, 刘铁根, 等. 基于复合波长参考的温度稳定光纤光栅传感解调研究[J]. 光学学报, 2015, 35(10): 1006005.

引用该论文

Zheng Shengheng,Yang Yuanhong. High Precision and Accuracy Wavelength Tuning Characteristics of Modulated Grating Y-Branch Tunable Lasers[J]. Chinese Journal of Lasers, 2019, 46(2): 0201001

郑胜亨,杨远洪. 调制光栅Y分支可调谐激光器高精准波长调谐特性[J]. 中国激光, 2019, 46(2): 0201001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF