首页 > 论文 > 中国激光 > 46卷 > 2期(pp:211003--1)

激光诱导多孔阳极氧化铝等离子体的特性

Characteristics of Laser-Induced Plasma in Porous Anodic Aluminum Oxide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以不同孔径的阳极氧化铝(AAO)多孔材料作为研究对象,基于高速摄影和原子发射光谱分别研究了AAO孔径对激光诱导等离子体形态演变和温度的影响,利用吸收光谱及时域有限差分法对样品的光反射率进行测试与仿真分析。研究结果表明:在一定的孔径范围内,随着AAO孔径减小,等离子体的存在时间变长,光谱谱线强度变大,等离子体的电子温度升高;AAO的等离子体参数均大于抛光铝片的,其电子温度比抛光铝片的高2000~3500 K;在一定的孔径范围内,AAO孔径越小,光在样品内部的吸收系数越高,解释了等离子体增强的原因。

Abstract

Taking anodic aluminum oxide (AAO) with different pore diameters as research object,we study the effects of pore size of AAO on the morphological evolution and temperature of laser-induced plasma based on high-speed photography and atomic emission spectroscopy. The light reflectance of samples is tested and simulated by absorption spectroscopy and finite-difference time-domain (FDTD) method.The results show that within a certain pore range, as the AAO pore size decreases, plasma duration becomes long, the spectral line intensity becomes large, and the plasma electron temperature becomes high. The plasma parameters of AAO are larger than those of polished aluminum sheet, in which electron temperature of plasma of AAO is 2000-3500 K higher than that of polished aluminum sheet. Within a certain pore range, the smaller the AAO pore, the higher absorption coefficient of light in the sample, which explains the reason of AAO plasma enhancement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN241;O53

DOI:10.3788/cjl201946.0211003

所属栏目:光谱学

基金项目:国家自然科学基金(11672137)

收稿日期:2018-09-04

修改稿日期:2018-09-21

网络出版日期:2018-10-24

作者单位    点击查看

孟宁喜:南京理工大学化工学院, 江苏 南京 210094
郭伟:南京理工大学化工学院, 江苏 南京 210094
吴立志:南京理工大学化工学院, 江苏 南京 210094
沈瑞琪:南京理工大学化工学院, 江苏 南京 210094
叶迎华:南京理工大学化工学院, 江苏 南京 210094
张伟:南京理工大学化工学院, 江苏 南京 210094

联系人作者:孟宁喜(mnxwxjc@163.com); 吴立志(wulizhi@njust.cn);

【1】Gao A H, Wang S G, Yan L R. High-precision laser absorption rate measuring device[J]. Journal of Applied Optics, 2016, 37(2): 303-307.
高爱华, 王少刚, 闫丽荣. 一种高精度激光吸收率测量装置[J]. 应用光学, 2016, 37(2): 303-307.

【2】Sun C W. Laser irradiation effect[M]. Beijing: National Defence Industry Press, 2002.
孙承纬. 激光辐照效应[M]. 北京:国防工业出版社,2002.

【3】Fu S C, Yang L J, Wang Y, et al. The measurement of the laser absorption coefficient of aluminum alloy plate before and after being coated with graphite[J]. Science Technology and Engineering, 2016, 16(35): 171-175.
付守冲, 杨立军, 王扬, 等. 铝合金板材涂覆石墨前后的激光吸收率确定方法[J]. 科学技术与工程, 2016, 16(35): 171-175.

【4】Stahl D B, Paisley D L. Carbon-assisted flyer plates: US 5301612 A[P]. 1994-04-12.

【5】Hatt D J, Waschl J A. A study of laser-driven flyer plates[C]. American Institute of Physics Conference Proceedings, 1996, 370: 1221-1224.

【6】Labaste J L, Brisset D, Doucet M. Investigation of driving plasma materials for laser acceleration of flyer plates[C]. American Institute of Physics Conference Proceedings, 2000, 505: 1189-1192.

【7】Murnane M M, Kapteyn H C, Gordon S P, et al. Efficient coupling of high‐intensity subpicosecond laser pulses into solids[J]. Applied Physics Letters, 1993, 62(10): 1068-1070.

【8】Lanzalone G, Altana C, Mascali D, et al. Effect of advanced nanowire-based targets in nanosecond laser-matter interaction[J]. Review of Scientific Instruments, 2016, 87(2): 02B324.

【9】Muoio A, Altana C, Frassetto M, et al. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results [J]. Journal of Instrumentation, 2017, 12(3): C03076.

【10】Gao Y F, Zhao Q H, Xu X F, et al. Research on reflection properties of silicon based solar cells with parabolic cone array structure[J]. Chinese Journal of Lasers, 2015, 42(8): 0808004.
高永锋, 赵琼华, 许孝芳, 等. 光伏电池表面抛物锥阵列微结构的反射特性研究[J].中国激光, 2015, 42(8): 0808004.

【11】Shi X, Sun C, Wang X Q. One-dimensional diffraction grating structure for rear reflection surface of thin film silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010501.
石鑫, 孙诚, 王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构[J]. 激光与光电子学进展, 2018, 55(1): 010501.

【12】Zhu S H. Study on performance of CuO-Al reactive multilayer films used in laser-driven flyer[D]. Nanjing: Nanjing University of Science and Technology, 2015.
朱生华. 反应性复合薄膜CuO-Al在激光驱动飞片技术中的性能研究[D]. 南京: 南京理工大学, 2015.

【13】Tang X S, Li C Y, Zhu G L, et al. Experimental investigation on the electron density and electron temperature of laser-induced Al plasmas[J]. Chinese Journal of Lasers, 2004, 31(6): 687-692.
唐晓闩, 李春燕, 朱光来, 等. 激光诱导Al等离子体中电子密度和温度的实验研究 [J]. 中国激光, 2004, 31(6): 687-692.

【14】Zhao Y. Experimental research on the laser-induced breakdown spectroscopy of Al sample[D]. Changchun: Jilin University, 2008.
赵阳. 激光诱导击穿光谱法对Al等离子体特性的实验研究[D]. 长春: 吉林大学, 2008.

【15】Guo W, Wu L Z, He N B, et al. Efficiency relationship between initiation of HNS-IV and nanosecond pulsed laser-driven flyer plates of layered structure[J]. Laser and Particle Beams, 2018, 36(1): 29-40.

【16】Ye W. FDTD simulation of Al nanostructures and their applications in the ultraviolet range[D]. Wuhan: Huazhong University of Science and Technology, 2016.
叶伟. Al纳米结构的FDTD模拟研究及其在紫外波段的应用[D]. 武汉: 华中科技大学, 2016.

引用该论文

Meng Ningxi,Guo Wei,Wu Lizhi,Shen Ruiqi,Ye Yinghua,Zhang Wei. Characteristics of Laser-Induced Plasma in Porous Anodic Aluminum Oxide[J]. Chinese Journal of Lasers, 2019, 46(2): 0211003

孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性[J]. 中国激光, 2019, 46(2): 0211003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF