首页 > 论文 > 中国激光 > 46卷 > 2期(pp:210001--1)

基于多层深度特征融合的极化合成孔径雷达图像语义分割

Semantic Segmentation of Polarimetric Synthetic Aperture Radar Images Based on Multi-Layer Deep Feature Fusion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统特征表征能力较弱的问题,提出了一种基于多层深度特征融合的极化合成孔径雷达图像语义分割方法;利用经过预训练的VGG-Net-16模型提取表征能力更强的多层图像特征,再将各层深度特征分别用于训练对应的条件随机场模型,最后将多个条件随机场模型的输出结果进行融合,实现了最终的图像语义分割。结果表明:与基于传统经典特征的方法相比,所提方法取得了最高的总体分类精度,说明所提方法采用的融合特征具有比传统特征更强的表征能力。

Abstract

Aiming at the problem that the traditional feature representation ability is weak, we propose a polarization synthetic aperture radar image semantic segmentation method based on the multi-layer deep feature fusion. The pre-trained VGG-Net-16 model is used to extract multi-layer image features with strong representation ability, and then deep features of each layer are used to train the corresponding conditional random field model. The output results of multiple conditional random field models are finally merged to realize the final semantic segmentation of the images. The results show that compared with the methods based on classical features, the proposed method achieves the highest overall accuracy, indicating that the fusion features used by the proposed method have stronger representation ability than traditional features.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/cjl201946.0210001

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41601436,61403414,61703423)、陕西省自然科学基础研究计划(2018JM4029,2016JQ6070)

收稿日期:2018-09-20

修改稿日期:2018-10-10

网络出版日期:2018-10-22

作者单位    点击查看

胡涛:空军工程大学信息与导航学院, 陕西 西安 710077
李卫华:空军工程大学信息与导航学院, 陕西 西安 710077
秦先祥:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:胡涛(hu1862965@163.com); 李卫华(lwh_kgd@163.com); 秦先祥(qinxianxiang@163.com);

【1】Yang W, Zhang X, Chen L J, et al. Semantic segmentation of polarimetric SAR imagery using conditional random fields[C]∥IEEE International Geoscience and Remote Sensing Symposium, July 25-30, 2010, Honolulu, Hawaii, USA. New Jersey: IEEE, 2010: 1593-1596.

【2】Chen S W, Tao C S. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627-631.

【3】Wan J H, Zang J X, Liu S W. Fusion and classification of SAR and optical image with consideration of polarization characteristics[J]. Acta Optica Sinica, 2017, 37(6): 0628001.
万剑华, 臧金霞, 刘善伟. 顾及极化特征的SAR与光学影像融合与分类[J]. 光学学报, 2017, 37(6): 0628001.

【4】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

【5】Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 32(74): 2965-2971.

【6】He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[J]. Proceedings of the IEEE, 2015, 28: 1026-1034.

【7】Zhou Y, Wang H P, Xu F, et al. Polarimetric SAR image classification using deep convolutional neural networks [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935-1939.

【8】Hou B, Kou H D, Jiao L C. Classification of polarimetric SAR images using multilayer autoencoders and superpixels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3072-3081.

【9】Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]∥Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA. San Francisco: Morgan Kaufmann, 2001: 282-289.

【10】LI S Z. Markov random field modeling in computer vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(10): 939-954.

【11】Han P, Han B B. Lee filter of PolSAR image based on typical scattering difference index[J]. Systems Engineering and Electronics, 2018, 40(2): 287-294.
韩萍, 韩宾宾. 基于典型散射差异指数的PolSAR图像Lee滤波[J]. 系统工程与电子技术, 2018, 40(2): 287-294.

【12】Mika S, Schlkopf B, Smola A, et al. Kernel PCA and de-noising in feature spaces[C]∥Proceedings of Conference on Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 1999: 536-542.

【13】Lee C H, Schmidt M, Murtha A, et al. Segmenting brain tumors with conditional random fields and support vector machines[C]∥Proceedings of the 1st Internatinoal Conference on Computer Vision for Biomedical Image Applications. Heidelberg: Springer, 2005: 469-478.

【14】Kumar S, Hebert M. Discriminative fields for modeling spatial dependencies in natural images[C]∥Proceedings of Conference on Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 2004: 1531-1538.

【15】Domke J. Learning graphical model parameters with approximate marginal inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2454-2467.

【16】Parikh D, Batra D. CRFs for image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(5): 460-472.

【17】Krishnapuram B, Carin L, Figueiredo M, et al. Sparse multinomial logistic regression: fast algorithms and generalization bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957-968.

【18】Vedaldi A, Lenc K. MatConvNet: convolutional neural networks for MATLAB[C]∥Proceedings of the 23rd ACM International Conference on Multimedia, October 26-30, 2015, Brisbane, Australia. New York: ACM, 2015: 689-692.

【19】Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty

【20】Liu B, Hu H, Wang H Y, et al. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907-924.

引用该论文

Hu Tao,Li Weihua,Qin Xianxiang. Semantic Segmentation of Polarimetric Synthetic Aperture Radar Images Based on Multi-Layer Deep Feature Fusion[J]. Chinese Journal of Lasers, 2019, 46(2): 0210001

胡涛,李卫华,秦先祥. 基于多层深度特征融合的极化合成孔径雷达图像语义分割[J]. 中国激光, 2019, 46(2): 0210001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF