首页 > 论文 > 中国激光 > 46卷 > 2期(pp:203002--1)

高应变InxGa1-xAs薄膜的结晶质量及光学特性

Crystallization Quality and Optical Properties of High Strain InxGa1-xAs Film

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过分子束外延(MBE)生长技术,在GaAs(100)基片上生长出单晶InxGa1-xAs薄膜,利用反射高能电子衍射仪(RHEED)实时监控薄膜生长情况。对InxGa1-xAs薄膜进行了X射线衍射(XRD)测试,结果显示该薄膜为高质量薄膜,且In组分(原子数分数)为0.51。光致发光(PL)光谱测试结果表明,室温下发光峰位约为1.55 μm;由于InxGa1-xAs薄膜中存在压应变,光谱峰位出现蓝移。Raman光谱显示GaAs-like横向光学声子(TO)模式的峰出现了明显展宽,验证了InxGa1-xAs薄膜中存在应变。

Abstract

Single crystal InxGa1-xAs film is grown on a GaAs (100) substrate through molecular beam epitaxy (MBE) growth technique, and the growth of InxGa1-xAs film is monitored in real time by a reflective high energy electron diffractometer (RHEED). The InxGa1-xAs film is characterized by X-ray diffraction (XRD), and the InxGa1-xAs exhibits a high-quality film with the In component (atomic fraction) of 0.51. The luminescence peak at room temperature is found to be around 1.55 μm by photoluminescence (PL) spectroscopy, and the blue shift of the spectrum is observed due to the existence of compression strain in the InxGa1-xAs film. The Raman spectra show that the peak of the GaAs-like transverse (TO) optic phonon mode is obviously broadened, which proves that the strain exists in the ternary alloy InxGa1-xAs film.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484

DOI:10.3788/cjl201946.0203002

所属栏目:材料与薄膜

基金项目:国家自然科学基金(61474010,61574022,11674038)、国家重点研发计划(2017YFB0402800)、吉林省科技发展计划(20160519007JH,20160101255JC)、吉林省科技厅重大科技招标专项(20160203015GX)、长春理工大学科技创新基金(XJJLG-2016-11,XJJLG-2016-14)

收稿日期:2018-08-31

修改稿日期:2018-09-26

网络出版日期:2018-10-14

作者单位    点击查看

亢玉彬:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
唐吉龙:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
张健:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
方铉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
房丹:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王登魁:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
林逢源:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
魏志鹏:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022

联系人作者:唐吉龙(jl_tangcust@163.com)

【1】Lester L F, Hwang K C, Ho P, et al. Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs[J]. IEEE Photonics Technology Letters, 1993, 5(5): 511-514.

【2】Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2464-2472.

【3】Wu J, Walukiewicz W, Yu K M, et al. Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system[J]. Journal of Applied Physics, 2003, 94(10): 6477-6482.

【4】Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors[J]. Physical Review Letters, 1992, 68(17): 2664-2667.

【5】Heimbuch M E, Holmes A L, Reaves C M, et al. Tertiarybutylarsine and tertiarybutylphosphine for the MOCVD growth of low threshold 1.55 μm InxGa1-xAs/InP quantum-well lasers[J]. Journal of Electronic Materials, 1994, 23(2): 87-91.

【6】Xia N, Fang X, Rong T Y, et al. Effect of surface sulfur passivation on photoresponse characteristics of GaAs materials[J]. Chinese Journal of Lasers, 2018, 45(6): 0603002
夏宁, 方铉, 容天宇, 等. 表面硫钝化对GaAs材料光响应特性的影响[J]. 中国激光, 2018, 45(6): 0603002.

【7】Ponomarev D S, Khabibullin R A, Yachmenev A E, et al. Intensive terahertz radiation from InxGa1-xAs due to photo-dember effect[J]. International Journal of High Speed Electronics and Systems, 2016, 25(3): 1640023.

【8】Lee H J, Jang I K, An W C, et al. Enhanced output power of InGaAs/GaAs infrared light-emitting diode with GaxIn1-xP tensile strain barrier[J]. Current Applied Physics, 2017, 17(12): 1582-1588.

【9】Kim D K, Lee H J, An W C, et al. Dependence of laminar flow fluctuation on indium composition in In0.07GaAs/GaAs quantum wells for 940-nm infrared light-emitting diodes[J]. Journal of the Korean Physical Society, 2018, 72(9): 1020-1024.

【10】Luo Z J, Ni Z F, Ding Z, et al. The critical thickness of InxGa1-xAs/GaAs heterofilms[J]. Journal of Functional Materials, 2018, 49(8): 8166-8171.
罗子江, 倪照风, 丁召, 等. InxGa1-xAs/GaAs异质薄膜的临界厚度[J]. 功能材料,2018, 49(8): 8166-8171.

【11】Luo Z J, Zhou X, He Y Q,et al. The MBE growth research on different composition of In of InGaAs films under the real-time monitoring of RHEED[J]. Journal of Functional Materials, 2011, 42(11): 2107-2111.
罗子江, 周勋, 贺业全, 等. RHEED实时监控下MBE生长不同In组分的InGaAs薄膜[J]. 功能材料, 2011, 42(11): 2107-2111.

【12】Guo X, Wang Y, Wei W Z, et al. Study on the surface morphology of InxGa1-xAs film subjected to varying stresses[J]. Materials Review, 2015, 29(2): 21-23, 37.
郭祥, 王一, 魏文喆, 等. 不同应力下的InxGa1-xAs薄膜表面形貌[J]. 材料导报, 2015, 29(2): 21-23,37.

【13】Liu B L, Yang S R, Chen B J, et al. InGaAs/InP strained quantum well LD by LP-MOCVD[J]. Acta Photonica Sinica 1996, 25(5): 434-438.
刘宝林, 杨树人, 陈伯军, 等. LP: MOCVD研制InGaAs/InP应变量子阱LD[J]. 光子学报, 1996, 25(5): 434-438.

【14】Liu Y, Li L, Qiao Z L, et al. Optical characteristics of 1.06 μm InGaAs/GaAs quantum well grown by MOCVD[J]. Chinese Journal of Lasers, 2014, 41(11): 1106001.
刘洋, 李林, 乔忠良, 等. MOCVD生长1.06 μm波段InGaAs/GaAs单量子阱材料的发光特性研究[J]. 中国激光, 2014, 41(11): 1106001.

【15】Zhu L D, Li J, Chen D Y, et al. Low pressure MOCVD growth and characterization of InGaAs/InP bulk materials, quantum wells and superlattices[J]. Chinese Journal of Semiconductors, 1993, 14(4): 208-216.
朱龙德, 李晶, 陈德勇, 等. InGaAs/InP体材料和量子阱、超晶格材料的低压MOCVD生长及材料特性的测试分析[J].半导体学报, 1993, 14(4): 208-216.

【16】Wang X L, Li Y C, Han A Z, et al. Preparation and performance of InGaAs thin film by electrodeposit [J]. Chinese Journal of Material Research, 2001, 15(4): 451-454.
王喜莲, 李浴春, 韩爱珍, 等. 用电共沉积方法制备InGaAs薄膜[J]. 材料研究学报, 2001, 15(4): 451-454.

【17】Luo Z J, Zhou X, Yang Z R, et al. The MBE growth research on InGaAs/GaAs heterofilms[J]. Journal of Functional Materials, 2011, 42(5): 846-849.
罗子江, 周勋, 杨再荣, 等. InGaAs/GaAs异质薄膜的MBE生长研究[J]. 功能材料, 2011, 42(5): 846-849.

【18】Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.

【19】Deki R, Sasaki T, Takahasi M. Strain relaxation and compositional separation during growth of InGaAs/GaAs(001)[J].Journal of Crystal Growth, 2017, 468: 241-244.

【20】Arent D J, Deneffe K,van Hoof C, et al. Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures[J]. Journal of Applied Physics, 1989, 66(4): 1739-1747.

【21】Nahory R E, Pollack M A, Johnston W D Jr, et al. Band gap versus composition and demonstration of Vegard′s law for In1-xGaxAsyP1-y lattice matched to InP[J]. Applied Physics Letters, 1978, 33(7): 659-661.

【22】Sugiyama Y, Inata T, Fujii T, et al. Conduction band edge discontinuity of In0.52Ga0.48As/In0.52(Ga1-xAlx)0.48As(0≤x≤1) heterostructures[J]. Japanese Journal of Applied Physics, 1986, 25(8): L648-L650.

【23】Brodsky M H, Lucovsky G. Infrared reflection spectra of Ga1-xInxAs: a new type of mixed-crystal behavior[J]. Physical Review Letters, 1968, 21(14): 990-993.

【24】Pearsall T P, Carles R, Portal J C. Single longitudinal-mode optical phonon scattering in Ga0.47In0.53As[J]. Applied Physics Letters, 1983, 42(5): 436-438.

【25】Emura S, Gonda S I, Matsui Y, et al. Internal-stress effects on Raman spectra of InxGa1-xAs on InP[J]. Physical Review B, 1988, 38(5): 3280-3286.

【26】Yu S J, Asahi H, Emura S, et al. Raman scattering study of thermal interdiffusion in InGaAs/InP superlattice structures[J]. Journal of Applied Physics, 1991, 70(1): 204-208.

【27】Estrera J P, Stevens P D, Glosser R, et al. Phonon mode study of near-lattice-matched InxGa1-xAs using micro-Raman spectroscopy[J]. Applied Physics Letters, 1992, 61(16): 1927-1929.

引用该论文

Kang Yubin,Tang Jilong,Zhang Jian,Fang Xuan,Fang Dan,Wang Dengkui,Lin Fengyuan,Wei Zhipeng. Crystallization Quality and Optical Properties of High Strain InxGa1-xAs Film[J]. Chinese Journal of Lasers, 2019, 46(2): 0203002

亢玉彬,唐吉龙,张健,方铉,房丹,王登魁,林逢源,魏志鹏. 高应变InxGa1-xAs薄膜的结晶质量及光学特性[J]. 中国激光, 2019, 46(2): 0203002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF