首页 > 论文 > 激光与光电子学进展 > 56卷 > 4期(pp:40601--1)

基于直调激光器注入锁定的倍频信号产生

Frequency Multiplication Signal Generation Based on Injection Locking of Directly Modulated Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将调制频率为1 GHz的正弦波光信号的高阶谐波分量注入直调激光器,信号的光场强度和载流子浓度相互作用形成光电流,光电流经过直调激光器的射频(RF)端口形成微波倍频信号。实验通过检测RF端口的倍频信号功率变化,反馈控制直调激光器的波长,完成直调激光器的自动锁定,产生无光电探测器的10 GHz、12 GHz微波倍频信号。对比无自动锁定回路的注入锁定方案,自动锁定产生的微波倍频信号更稳定,其功率波动在10 min内稳定在2 dB,10 kHz处的相位噪声恶化程度控制在2.2 dB。微波倍频信号的最高倍频数取决于直调激光器的最高调制速率。

Abstract

The high-order harmonic component of a 1 GHz modulated sinusoidal wave optical signal is injected into the directly modulated laser, and the interaction between the intensity of the light field and the carrier concentration forms the photocurrent. The photocurrent is then converted into a microwave frequency multiplication signal at the radio frequency (RF) port of this directly modulated laser. In the experiment, the feedback control the directly modulated laser wavelength and thus the automatic locking of the laser are realized by the powe rvariance of the frequency multiplication signal detected at the RF port. The microwave frequency multiplication signals at 10 GHz and 12 GHz are generated without photodetectors. Compared with those by the injection locking scheme without an automatic locking loop, the microwave frequency multiplication signals by automatic locking are more stable. The power fluctuation is stable at 2 dB within 10 min, and the phase noise deterioration at 10 kHz is as little as 2.2 dB. The produced largest frequency doubling number of microwave frequency multiplication signals depends on the maximum modulation rate of the directly modulated laser.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/lop56.040601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61427817,61775162)

收稿日期:2018-07-24

修改稿日期:2018-08-27

网络出版日期:2018-08-31

作者单位    点击查看

王帅帅:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
王菊:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
马闯:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
李天宇:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
谢田元:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
于洋:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
于晋龙:天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072

联系人作者:王菊(wangju@tju.edu.cn)

【1】Li H O, Li S M, Chen M, et al. Research progresses on microwave photonics technologies[J]. Optical Communication Technology, 2011(8): 24-28.
李海鸥, 李思敏, 陈明, 等. 微波光子技术的研究进展[J]. 光通信技术, 2011(8): 24-28.

【2】Yu J J, Jia Z S, Yi L, et al. Optical millimeter-wave generation or up-conversion using external modulators[J]. IEEE Photonics Technology Letters, 2006, 18(1): 265-267.

【3】Naderi N A, Pochet M, Grillot F, et al. Modeling the injection-locked behavior of a quantum dash semiconductor laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 563-571.

【4】Seo Y K, Choi C S, Choi W Y. All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 2002, 14(10): 1448-1450.

【5】Mogensen F, Olesen H, Jacobsen G. Locking conditions and stability properties for a semiconductor laser with external light injection[J]. IEEE Journal of Quantum Electronics, 1985, 21(7): 784-793.

【6】Liu A L, Yin H X, Wu B, et al. Phase-shift characteristics of radio frequency signals for radio over fiber transmission systems[J]. Acta Optica Sinica, 2018, 38(5): 0506003.
刘安良, 殷洪玺, 吴宾, 等. 光载无线通信系统射频信号相移特性研究[J]. 光学学报, 2018, 38(5): 0506003.

【7】Ye J, Yan L S, Pan W, et al. Generation of hybrid frequency and phase shift keying signal for radio over fiber system[J]. Acta Optica Sinica, 2018, 38(2): 0206002.
叶佳, 闫连山, 潘炜, 等. 面向光载无线系统的混合频相调制信号产生[J]. 光学学报, 2018, 38(2): 0206002.

【8】Hui R, D′Ottavi A, Mecozzi A, et al. Injection locking in distributed feedback semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1688-1695.

【9】Wu B, Yu J L, Zhang Z, et al. A novel and tunable frequency-upconversion based on FP-LD injection of one low bit-rate signal without any RF local oscillator[J]. IEEE Photonics Technology Letters, 2010, 22(14): 1027-1029.

【10】Hong C, Zhang C, Li M J, et al. Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems[J]. IEEE Photonics Technology Letters, 2010, 22(7): 462-464.

【11】Fu S N, Zhong W D, Shum P, et al. Simultaneous multichannel photonic up-conversion based on nonlinear polarization rotation of an SOA for radio-over-fiber systems[J]. IEEE Photonics Technology Letters, 2009, 21(9): 563-565.

【12】Wiberg A, Perez-Millan P, Andres M V, et al. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings[J]. Journal of Lightwave Technology, 2006, 24(1): 329-334.

【13】Gan L Q, Li F, Wai P K A, et al. Microwave signal generation using sideband injection locking in an Fabry-Pérot laser diode[C]∥Opto-Electronics and Communications Conference, 28 June-2 July, 2015, Shanghai, China. New York: IEEE, 2015: 1-3.

【14】Jia Z S, Yu J J, Chang G K. A full-duplex radio-over-fiber system based on optical carrier suppression and reuse[J]. IEEE Photonics Technology Letters, 2006, 18(16): 1726-1728.

【15】Xu Z B, Zhang X P, Yu J J. Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks[J]. Optics Express, 2007, 15(25): 16737-16747.

【16】Han Y S, Zhang L, Wang J H. Radio over fiber system for optical millimeter-wave generation by PM modulation[J]. Optical Communication Technology, 2011(8): 62-64.
韩一石, 张厉, 王建华. 采用PM调制实现光生毫米波的RoF系统[J]. 光通信技术, 2011(8): 62-64.

【17】Hong L, Su J, Yang L, et al. Frequency-tunable microwave and millimeter-wave sources with photonic generation[J]. Journal of Optoelectronics·Laser, 2011, 22(1): 64-66.
洪蕾, 苏觉, 杨利, 等. 一种频率可调的光学生成微波毫米波源[J]. 光电子·激光, 2011, 22(1): 64-66.

【18】Ng′Oma A. Radio-over-fibre technology for broadband wireless communication systems[D]. Eindhoven: Eindhoven University of Technology, 2005: 18-27.

【19】Gao Y, Wang J, Wang W R, et al. Tunable laser based on Fabry-Perot laser self injection locking[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061401.
高毅, 王菊, 王文睿, 等. 基于法布里-珀罗激光器自注入锁定的波长可调谐激光器[J]. 激光与光电子学进展, 2018, 55(6): 061401.

【20】Han B C, Yu J L, Wang W R, et al. Experimental study of continuously tunable photonic microwave frequency multiplication based on distributed feedback injection locking[J]. Chinese Journal of Lasers, 2012, 39(12): 1205004.
韩丙辰, 于晋龙, 王文睿, 等. 基于分布反馈注入锁定的连续可调光子微波倍频实验研究[J]. 中国激光, 2012, 39(12): 1205004.

【21】Wang W R, Yu J L, Han B C, et al. Tunable microwave frequency multiplication by injection locking of DFB laser with a weakly phase modulated signal[J]. IEEE Photonics Journal, 2014, 6(2): 1-8.

【22】Zhu H T, Wang R, Xiang P, et al. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing[J]. Optics Communications, 2017, 400: 101-105.

【23】He Y T, Jiang Y, Zi Y J, et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 2018, 45(1): 0101005.
何禹彤, 江阳, 訾月姣, 等. 基于注入锁定和时域综合的倍频三角波产生技术[J]. 中国激光, 2018, 45(1): 0101005.

【24】Wei M, Huchard M, Stohr A, et al. 60-GHz photonic millimeter-wave link for short- to medium-range wireless transmission up to 12.5 Gb/s[J]. Journal of Lightwave Technology, 2008, 26(15): 2424-2429.

【25】Gao J J, Gao B X, Liang C G. The equivalent circuit model of PIN photodiode[J]. Journal of Microwares, 1998, 14(1): 29-34.
高建军, 高葆新, 梁春广. PIN光电探测器等效电路模型研究[J]. 微波学报, 1998, 14(1): 29-34.

引用该论文

Wang Shuaishuai,Wang Ju,Ma Chuang,Li Tianyu,Xie Tianyuan,Yu Yang,Yu Jinlong. Frequency Multiplication Signal Generation Based on Injection Locking of Directly Modulated Laser[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040601

王帅帅,王菊,马闯,李天宇,谢田元,于洋,于晋龙. 基于直调激光器注入锁定的倍频信号产生[J]. 激光与光电子学进展, 2019, 56(4): 040601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF