首页 > 论文 > 光学学报 > 39卷 > 3期(pp:304001--1)

光场相机精确色彩矢量约束下的超分辨率算法

Super-Resolution Algorithm Based on Precise Color Vector Constraint of Light Field Camera

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以LYTRO相机为例,提出一种精确色彩矢量约束下的光场图像超分辨率算法。根据相机内部微透镜阵列按六边形分布的特点,结合点扩散函数,及相机探测器阵列上滤光片的排列方式,计算了每个单一像素点的RGB色彩分量值,精确恢复出每一个像素的颜色信息;利用金字塔算法对色彩恢复的时效性进行了优化。提出一种基于相机子孔径图像序列颜色矢量约束下的超分辨率算法,以提高图像质量。所提的色彩恢复方法可以用于多款光场相机,同时以色彩矢量作为约束条件,彩色超分辨率图像恢复的效果理想。

Abstract

Taking LYTRO camera as an example, we propose a super-resolution algorithm for light field image with precise color vector. According to the hexagonal distribution of the microlens array inside the camera, combining with the point spread function and the arrangement of the filters on the camera detector array, we calculate the RGB color component values of each single pixel point, and accurately recover the color information of each pixel. The timeliness of color restoration is optimized by using pyramid algorithm. In the second part, a super-resolution algorithm based on color vector constraint of camera sub-aperture image sequence is proposed to improve image quality. The proposed color restoration method can be applied to many kinds of light field cameras. At the same time, the color vector is used as the constraint condition, and the color super-resolution image restoration effect is ideal.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/aos201939.0304001

所属栏目:探测器

基金项目:国家自然科学基金(61672473)

收稿日期:2018-08-28

修改稿日期:2018-10-03

网络出版日期:2018-10-18

作者单位    点击查看

孙福盛:中北大学大数据学院, 山西 太原 030051
韩燮:中北大学大数据学院, 山西 太原 030051

联系人作者:孙福盛(sfs2699@163.com)

【1】Lippmann G. preuves réversibles donnant La sensation du relief[J]. Journal de Physique Théorique et Appliquée, 1908, 7(1): 821-825.

【2】Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics, 2005, 24(3): 765-776.

【3】Yang J C, Everett M, et al. A real-time distributed light field camera[J]. Euro Graphics Workshop on Rendering, 2002: 77-86.

【4】Lumsdaine A, Georgiev T. The focused plenoptic camera[C]∥2009 IEEE International Conference on Computational Photography (ICCP), April 16-17, 2009, San Francisco, CA, USA. New York: IEEE, 2009: 1-8.

【5】Ng R. Fourier slice photography[J]. ACM Transactions on Graphics, 2005, 24(3): 735-744.

【6】Ashok V, Ramesh R Amit A, et al. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Transactions on Graphics, 2007, 26(3): 69.

【7】Georgiev T, Zheng K C, et al. Spatio-angular resolution tradeoffs in integral photography[J]. Euro Graphics Conference on Rendering Techniques, 2006: 263-272.

【8】Unger J, Wenger A, et al. Capturing and rendering with incident light fields[J]. Euro Graphics Workshop on Rendering, 2003: 141-149.

【9】Lytro, http:∥lytro.com/.

【10】Raytrix, http: ∥www.raytrix.de/.

【11】Dansereau D G, Pizarro O, Williams S B. Decoding, calibration and rectification for lenselet-based plenoptic cameras[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2013: 1027-1034.

【12】Bishop T E, Zanetti S, Favaro P. Light field superresolution[C]∥2009 IEEE International Conference on Computational Photography (ICCP), April 16-17, 2009, San Francisco, CA, USA. New York: IEEE, 2009: 1-9.

【13】Mitra K, Veeraraghavan A. Light field denoising, light field superresolution and stereo camera based refocussing using a GMM light field patch prior[C]∥2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 2012: 22-28.

【14】Wanner S, Goldluecke B. Spatial and angular variational super-resolution of 4D light fields[M]∥Fitzgibbon A, Lazebnik S, Perona P, et al. eds. Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer, 2012: 608-621.

【15】Qiu K, Yi B S, Xiang M, et al. Collaborative sparse dictionary learning for reconstruction of single image super resolution[J]. Acta Optica Sinica, 2018, 38(9): 0910002.
邱康, 易本顺, 向勉, 等. 协作稀疏字典学习实现单幅图像超分辨率重建[J]. 光学学报, 2018, 38(9): 0910002.

【16】Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 2790-2798.

【17】Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on convolutional neural networks[J]. Acta Optica Sinica, 2017, 37(12): 1210002.
李素梅, 雷国庆, 范如. 基于卷积神经网络的深度图超分辨率重建[J]. 光学学报, 2017, 37(12): 1210002.

【18】Pérez F, Pérez A, Rodríguez M, et al. Fourier slice super-resolution in plenoptic cameras[C]∥2012 IEEE International Conference on Computational Photography (ICCP), April 28-29, 2012, Seattle, WA, USA. New York: IEEE, 2012: 1-11.

【19】Shi L X, Hassanieh H, Davis A, et al. Light field reconstruction using sparsity in the continuous Fourier domain[J]. ACM Transactions on Graphics, 2014, 34(1): 1-13.

【20】Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics Express, 2013, 21(21): 25418-25439.

【21】Trujillo-Sevilla J M, Rodríguez-Ramos L F, Montilla I, et al. High resolution imaging and wavefront aberration correction in plenoptic systems[J]. Optics Letters, 2014, 39(17): 5030-5033.

【22】Alam M Z, Gunturk B K. Hybrid stereo imaging including a light field and a regular camera[C]∥2016 24th Signal Processing and Communication Application Conference (SIU), May 16-19 2016, Zonguldak, Turkey. New York: IEEE, 2016: 1293-1296.

【23】Wang X, Li L, Hou G Q. High-resolution light field reconstruction using a hybrid imaging system[J]. Applied Optics, 2016, 55(10): 2580-2593.

【24】Wu J D, Wang H Q, Wang X Z, et al. A novel light field super-resolution framework based on hybrid imaging system[C]∥2015 Visual Communications and Image Processing (VCIP), December 13-16, 2015, Singapore, Singapore. New York: IEEE, 2015: 1-4.

【25】Ohashi K, Takahashi K, Tehrani M P, et al. Super-resolution image synthesis using the physical pixel arrangement of a light field camera[C]∥2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE, 2015: 2964-2968.

【26】Li Z N. The principle of modern optical system[M]. Beijing: Beijing Polytechnic University Press, 1994: 155-160.
李志能. 现代光学系统原理[M]. 北京: 北京理工大学出版社, 1994: 155-160.

【27】Zhou W H, Lin L L. Light field image rectification and refocus method for Lytro camera[J]. Journal of Image and Graphics, 2014, 19(7): 1006-1011.
周文晖, 林丽莉. Lytro相机的光场图像校正与重对焦方法[J]. 中国图象图形学报, 2014, 19(7): 1006-1011.

【28】Bayer B E. Color imaging array: US3971065[P]. 1976-07-27.

【29】Lu W M, Tan Y P. Color filter array demosaicking: new method and performance measures[J]. IEEE Transactions on Image Processing, 2003, 12(10): 1194-1210.

【30】Lu W M, Tan Y P. Adaptive color filter array demosaicking using directional spatial and spectral correlations[C]∥Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, December 15-18, 2003, Singapore, Singapore. New York: IEEE, 2003: 76-80.

【31】Gunturk B K, Altunbasak Y, Mersereau R M. Color plane interpolation using alternating projections[J]. IEEE Transactions on Image Processing, 2002, 11(9): 997-1013.

【32】Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

【33】Sun F S, Han X, Ding J H, et al. Research on algorithm of image depth estimation and reconstruction based on LYTRO camera[J]. Computer Engineering and Applications, 2018, 54(13): 175-180.
孙福盛, 韩燮, 丁江华, 等. LYTRO相机光场图像深度估计算法及重建的研究[J]. 计算机工程与应用, 2018, 54(13): 175-180.

【34】Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.

【35】Tekalp A M, Ozkan M K, Sezan M I. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration[C]∥[Proceedings]ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, March 23-26, 1992, San Francisco, CA, USA. New York: IEEE, 1992: 169-172.

引用该论文

Sun Fusheng,Han Xie. Super-Resolution Algorithm Based on Precise Color Vector Constraint of Light Field Camera[J]. Acta Optica Sinica, 2019, 39(3): 0304001

孙福盛,韩燮. 光场相机精确色彩矢量约束下的超分辨率算法[J]. 光学学报, 2019, 39(3): 0304001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF