首页 > 论文 > 中国激光 > 46卷 > 3期(pp:311004--1)

光束整形对激光诱导击穿光谱稳定性的改善

Improvement of Beam Shape Modification on Stability of Laser Induced Breakdown Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

使用衍射光学元件将高斯激光光束整形为能量分布均匀的平顶激光光束, 对比了两种激光诱导铜等离子体的特性, 研究了光束整形对激光诱导击穿光谱稳定性的改善作用。研究结果表明:激光光束能量分布的均匀性引起了烧蚀坑形貌以及单次烧蚀量的差异, 高斯激光和平顶激光诱导光谱的强度、等离子体温度和电子密度的相对标准偏差分别为12.33%和6.37%、2.10%和1.32%、5.31%和0.65%; 光束整形后激光诱导击穿光谱的稳定性得到了明显改善,两种激光诱导产生的等离子体均呈局部热力学平衡状态。

Abstract

The Gaussian laser beam is shaped into a flattop laser beam with uniform energy distribution by a diffractive optical element. The Cu plasma characteristics induced by two lasers are compared, and the improvement of the beam shape modification on the stability of laser-induced breakdown spectrum is studied. The research results show that the uniformity of beam energy distribution causes the difference in the morphology of the ablation crater and single-shot ablation amount. The relative standard deviations of the Gaussian laser and the flattop laser induced spectra intensity, plasma temperature and electron density are 12.33% and 6.37%, 2.10% and 1.32%, 5.31% and 0.65%, respectively. The stability of the laser-induced breakdown spectrum after beam shaping is significantly improved, and the two laser-induced plasmas are all in the local thermodynamic equilibrium state.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4;O657.3

DOI:10.3788/cjl201946.0311004

所属栏目:光谱学

基金项目:国家自然科学基金(61505223, 41775128)、中国科学院知识创新工程重大项目(Y03RC21124)、中国科学院对外重点合作项目(GJHZ1726)

收稿日期:2018-10-15

修改稿日期:2018-11-22

网络出版日期:2018-12-18

作者单位    点击查看

贾军伟:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
付洪波:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031
王华东:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
周琪琪:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
倪志波:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031
董凤忠:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:董凤忠(dfzhong@aiofm.ac.cn)

【1】Cremers D A, Knighr A K. Laser-induced breakdown spectroscopy[M]. New York: John Wiley & Sons, Ltd., 2006: 640-669.

【2】Knight A K, Scherbarth N L, Cremers D A, et al. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration[J]. Applied Spectroscopy, 2000, 54(3): 331-340.

【3】Sirven J B, Sallé B, Mauchien P, et al. Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(12): 1471-1480.

【4】Senesi G S, Dell′Aglio M, Gaudiuso R, et al. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium[J]. Environmental Research, 2009, 109(4): 413-420.

【5】Hu L, Zhao N J, Liu W Q,et al. Quantitative analysis of Pb in water based on multivariate calibration with LIBS[J]. Acta Optica Sinica, 2015, 35(6): 0630001.
胡丽, 赵南京, 刘文清, 等. 基于多元校正的水体Pb元素LIBS定量分析[J]. 光学学报, 2015, 35(6): 0630001.

【6】Anderson D E, Ehlmann B L, Forni O, et al. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data[J]. Journal of Geophysical Research: Planets, 2017, 122(4): 744-770.

【7】Lepore K H, Fassett C I, Breves E A, et al. Matrix effects in quantitative analysis of laser-induced breakdown spectroscopy (LIBS) of rock powders doped with Cr, Mn, Ni, Zn, and CO[J]. Applied Spectroscopy, 2017, 71(4): 600-626.

【8】Yu Y, Zhao N J, Meng D S, et al. Detection of heavy metals in soil based on polarization resolved LIBS technique[J]. Chinese Journal of Lasers, 2018, 45(8): 0811001.
余洋, 赵南京, 孟德硕, 等. 基于偏振分辨LIBS技术的土壤重金属检测研究[J]. 中国激光, 2018, 45(8): 0811001.

【9】Nassef O A, Elsayed-Ali H E. Spark discharge assisted laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(12): 1564-1572.

【10】Guo L B, Hu W, Zhang B Y, et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 2011, 19(15): 14067-14075.

【11】Su X J, Zhou W D, Qian H G. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23): 28437-28442.

【12】Li X W, Wang Z, Mao X L, et al. Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(11): 2127-2135.

【13】Wang J G, Li X L, Hu J T, et al. Effects of hemispherical confinement on the enhancement of laser-induced glass plasma radiation[J]. Acta Photonica Sinica, 2018, 47(8): 0847013.
王静鸽, 李小龙, 胡俊涛, 等. 半球空腔约束对激光诱导玻璃等离子体辐射增强特性的研究[J]. 光子学报, 2018, 47(8): 0847013.

【14】Li K, Shi P, Zhang X B, et al. Design and preparation of diffraction optical element in dual lens system[J]. Chinese Journal of Lasers, 2010, 37(8): 1972-1977.
李珂, 石鹏, 张晓波, 等. 双透镜系统光束整形元件的设计制作[J]. 中国激光, 2010, 37(8): 1972-1977.

【15】Apostol D, Nascov V, Cojoc D. Gaussian to rectangular laser beam shaping using diffractive optical elements[J]. SPIE, 2005, 5972: 59721G.

【16】Ciucci A, Corsi M, Palleschi V, et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 1999, 53(8): 960-964.

【17】Rusak D A, Castle B C, Smith B W, et al. Fundamentals and applications of laser-induced breakdown spectroscopy[J]. Critical Reviews in Analytical Chemistry, 1997, 27(4): 257-290.

【18】Griem H R, Scott F R. Plasma spectroscopy[J]. American Journal of Physics, 1965, 33(10): 864-865.

【19】Fujimoto T, McWhirter R W P. Validity criteria for local thermodynamic equilibrium in plasma spectroscopy[J]. Physical Review A, 1990, 42(11): 6588-6601.

引用该论文

Jia Junwei,Fu Hongbo,Wang Huadong,Zhou Qiqi,Ni Zhibo,Dong Fengzhong. Improvement of Beam Shape Modification on Stability of Laser Induced Breakdown Spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(3): 0311004

贾军伟,付洪波,王华东,周琪琪,倪志波,董凤忠. 光束整形对激光诱导击穿光谱稳定性的改善[J]. 中国激光, 2019, 46(3): 0311004

被引情况

【1】 郑培超, 谭癸宁, 王金梅, 赵怀冬, 刘冉宁. 基底辅助激光诱导击穿光谱技术检测润滑油中的金属元素. 中国激光, 2019, 46(7): 711002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF