首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:60003--1)

分布布拉格反射器半导体激光器的研究进展

Research Progress of Distributed Bragg Reflector Semiconductor Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与传统的法布里-珀罗(F-P)腔半导体激光器相比,采用分布布拉格反射器(DBR)光栅的边发射半导体激光器在窄线宽、输出波长稳定等方面展示出了优异的特性,其在激光通信、光互联及非线性频率转换等领域有着巨大的应用需求。通过合理设计DBR光栅及器件结构,DBR半导体激光器可以实现激光窄线宽、双波长输出以及波长可调谐等性能。基于内置DBR光栅结构,DBR锥形半导体激光器可以同时兼具高功率、窄线宽及高光束质量等特性。针对这几类激光器,阐述了其结构设计、制作工艺及其性能优势,总结了国内外最新研究进展与发展现状,并对DBR半导体激光器的研究工作和发展趋势做出了进一步的讨论和展望。

Abstract

Compared with traditional Fabry-Perot (F-P) cavity semiconductor lasers, the edge-emitting semiconductor lasers with distributed Bragg reflector (DBR) gratings exhibit excellent characteristics in terms of narrow linewidth and stable output wavelength. They have huge application requirements in the fields of laser communication, optical interconnection and nonlinear frequency conversion. The DBR semiconductor laser can achieve laser narrow linewidth, dual wavelength output and wavelength tunability by properly designing the DBR grating and device structure. The DBR tapered semiconductor laser can simultaneously combine high power, narrow linewidth and high beam quality owing to the built-in DBR grating structure. In this paper, the structural design, fabrication process and performance advantages of these types of lasers are discussed, and the present situation of research and development at home and abroad are summarized. Based on this, the research work and development trend of DBR semiconductor lasers are further discussed and prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/lop56.060003

所属栏目:综述

基金项目:国家自然科学基金青年科学基金(21707010)、吉林省科技发展计划(20180519018JH)、吉林省优秀青年基金(20180520194JH)

收稿日期:2018-08-23

修改稿日期:2018-09-22

网络出版日期:2018-10-19

作者单位    点击查看

范杰:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
龚春阳:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
杨晶晶:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
邹永刚:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
马晓辉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022

联系人作者:范杰(fanjie@cust.edu.cn)

【1】Li M Y, He J. Development situations of high power semiconductor laser for military applications in advanced countries[J]. Semiconductor Technology, 2015, 40(5): 321-327.
李明月, 何君. 国外军用大功率半导体激光器的发展现状[J]. 半导体技术, 2015, 40(5): 321-327.

【2】Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.

【3】Zhang J, Chen Y Y, Qin L, et al. Advances in high power high beam quality diode lasers[J]. Chinese Science Bulletin, 2017, 62(32): 3719-3728.
张俊, 陈泳屹, 秦莉, 等. 高功率、高光束质量半导体激光器研究进展[J]. 科学通报, 2017, 62(32): 3719-3728.

【4】Kong Y X, Ke X Z, Yang Y. Bit error rate of laser linewidth in spatial coherent optical communication link[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040603.
孔英秀, 柯熙政, 杨媛. 激光器线宽对空间相干光通信链路传输误码率研究[J]. 激光与光电子学进展, 2018, 55(4): 040603.

【5】Ma J Q. Influence of pump laser line width in frequency conversion[D]. Changsha: National University of Defense Technology, 2010.
马俊青. 激光器线宽对频率转换的影响[D]. 长沙: 国防科学技术大学, 2010.

【6】Gao P. Tunable semiconductor lasers for optical communication systems[J]. Wireless Internet Technology, 2014(7): 37.
高萍. 用于光通信系统的可调谐半导体激光器[J]. 无线互联科技, 2014(7): 37.

【7】Pachnicke S, Zhu J N, Lawin M, et al. Tunable WDM-PON system with centralized wavelength control[J]. Journal of Lightwave Technology, 2016, 34(2): 812-818.

【8】Wagner C, Eiselt M H, Lawin M, et al. Impairment analysis of WDM-PON based on low-cost tunable lasers[J]. Journal of Lightwave Technology, 2016, 34(22): 5300-5307.

【9】Diba A S, Xie F, Gross B, et al. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy[J]. Optics Express, 2015, 23(21): 27123-27133.

【10】Sumpf B, Kabitzke J, Fricke J, et al. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785 nm[J]. Optics Letters, 2016, 41(16): 3694-3697.

【11】Maiwald M, Fricke J, Ginolas A, et al. Monolithic Y-branch dual wavelength DBR diode laser at 671 nm for shifted excitation Raman difference spectroscopy[C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013, Munich, Germany. New York: IEEE, 2013: 1.

【12】Li B, Tu P, Xu Y Y, et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031404.
李斌, 涂嫔, 徐勇跃, 等. 405 nm波段光栅外腔窄线宽蓝紫光半导体激光器[J]. 激光与光电子学进展, 2015, 52(3): 031404.

【13】Xiang J F, Wang L G, Li L, et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.
项静峰, 王利国, 李琳, 等. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 0914002.

【14】Nakamura M, Yariv A, Yen H W, et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 1973, 22(10): 515-516.

【15】Reinhart F K, Logan R A, Shank C V. GaAs-AlxGa1-x As injection lasers with distributed Bragg reflectors[J]. Applied Physics Letters, 1975, 27(1): 45-48.

【16】Shi J X, Qin L, Ye S J, et al. A 927 nm distributed feedback laser with surface second-order metal grating[J]. Journal of Optoelectronics·Laser, 2011, 22(10): 1488-1491.
仕均秀, 秦莉, 叶淑娟, 等. 具有表面二阶金属光栅的927 nm分布反馈半导体激光器的研制[J]. 光电子·激光, 2011, 22(10): 1488-1491.

【17】Jia B S, Wang H, Li A M, et al. Narrow linewidth 1064 nm distributed Bragg reflector semiconductor laser[J]. Chinese Journal of Lasers, 2018, 45(5): 0501006.
贾宝山, 王皓, 李爱民, 等. 窄线宽1064 nm分布布拉格反射半导体激光器[J]. 中国激光, 2018, 45(5): 0501006.

【18】Du J Y, Li H, Qu Y, et al. Design of distributed Bragg grating in 1064 nm narrow linewidth DBR lasers[C]∥2015 International Conference on Optoelectronics and Microelectronics (ICOM), July 16-18, 2015, Changchun, China. New York: IEEE, 2015: 348-350.

【19】Hu C, Wang X P, You C, et al. Application of high resolution electron beam lithography technology in micro- and nano-fabrication[J]. Electronics & Packaging, 2017, 17(5): 28-32, 36.
胡超, 王兴平, 尤春, 等. 高精度电子束光刻技术在微纳加工中的应用[J]. 电子与封装, 2017, 17(5): 28-32, 36.

【20】Cui K Y, Li Y Z, Feng X, et al. Fabrication of high-aspect-ratio double-slot photonic crystal waveguide in InP heterostructure by inductively coupled plasma etching using ultra-low pressure[J]. AIP Advances, 2013, 3(2): 022122.

【21】Hou L P, Haji M, Dylewicz R, et al. Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology[J]. IEEE Photonics Technology Letters, 2010, 22(14): 1039-1041.

【22】Guziy O, Grzanka S, Leszczyński M, et al. Electronic tuning of integrated blue-violet GaN tunable coupled-cavity laser[J]. AIP Advances, 2012, 2(3): 032130.

【23】Buus J, Amann M C, Blumenthal D J. Tunablelaser diodes and related optical sources[M]. New York: John Wiley & Sons Inc, 2005: 221-245.

【24】Spieberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz[J]. Applied Physics B, 2011, 104(4): 813-818.

【25】Feise D, John W, Bugge F, et al. 96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface gratings[J]. Optics Letters, 2012, 37(9): 1532-1534.

【26】Blume G, Schiemangk M, Pohl J, et al. Narrow linewidth of 633-nm DBR ridge-waveguide lasers[J]. IEEE Photonics Technology Letters, 2013, 25(6): 550-552.

【27】Feise D, Blume G, Pohl J, et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings[J]. Proceedings of SPIE, 2013, 8640: 86400A.

【28】Paschke K, Bugge F, Blume G, et al. Watt-level continuous-wave diode lasers at 1180 nm with InGaAs quantum wells[J]. Proceedings of SPIE, 2014, 8965: 896509.

【29】Virtanen H, Aho A T, Viheril J, et al. Spectral characteristics of narrow-linewidth high-power 1180 nm DBR laser with surface gratings[J]. IEEE Photonics Technology Letters, 2017, 29(1): 114-117.

【30】Viheril J, Aho A T, Virtanen H, et al. 1180 nm GaInNAs quantum well based high power DBR laser diodes[J]. Proceedings of SPIE, 2017, 10086: 100860K.

【31】Paoletti R, Codato S, Coriasso C, et al. Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology[J]. Proceedings of SPIE, 2018, 10514: 105140V.

【32】Lu Q Y, Guo W H, Byrne D, et al. Design of slotted single-mode lasers suitable for photonic integration[J]. IEEE Photonics Technology Letters, 2010, 22(11): 787-789.

【33】Abdullaev A, Lu Q Y, Guo W H, et al. Linewidth characterization of integrable slotted single-mode lasers[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2225-2228.

【34】Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 284-286.

【35】Chen C, Zhao L J, Qiu J F, et al. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity[J]. Chinese Physics B, 2012, 21(9): 094208.

【36】Jia P, Liu X L, Chen Y Y, et al. Study of dual-wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings[J]. Chinese Journal of Lasers, 2015, 42(8): 0802007.
贾鹏, 刘晓莉, 陈泳屹, 等. 双波长高阶光栅分布布拉格反射半导体激光器的研究[J]. 中国激光, 2015, 42(8): 0802007.

【37】Yu L Q, Zhao L J, Lu D, et al. A novel four-section DBR tunable laser with dual-wavelength lasing[J]. Proceedings of SPIE, 2012, 8552: 85520T.

【38】Maiwald M, Fricke J, Ginolas A, et al. Dual-wavelength monolithic Y-branch distributed Bragg reflection diode laser at 671 nm suitable for shifted excitation Raman difference spectroscopy[J]. Laser & Photonics Reviews, 2013, 7(4): L30-L33.

【39】Maiwald M, Eppich B, Fricke J, et al. Dual-wavelength Y-branch distributed Bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 2014, 68(8): 838-843.

【40】Sumpf B, Maiwald M, Klehr A, et al. 785-nm dual wavelength DBR diode lasers and MOPA systems with output powers up to 750 mW[J]. Proceedings of SPIE, 2015, 9382: 93821B.

【41】Sumpf B, Maiwald M, Müller A, et al. Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy[J]. Applied Physics B, 2015, 120(2): 261-269.

【42】Sumpf B, Kabitzke J, Fricke J, et al. 785 nm dual-wavelength Y-branch DBR-RW diode laser with electrically adjustable wavelength distance between 0 nm and 2 nm[J]. Proceedings of SPIE, 2017, 10123: 101230T.

【43】Kyritsis G, Zakhleniuk N. Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1053311.

【44】Yu L Q, Wang H T, Lu D, et al. A widely tunable directly modulated DBR laser with high linearity[J]. IEEE Photonics Journal, 2014, 6(4): 1501308.

【45】Han L S, Liang S, Zhang C, et al. Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON[J]. Chinese Optics Letters, 2014, 12(9): 091402.

【46】Yu L Q, Lu D, Pan B W, et al. Widely tunable narrow-linewidth lasers using self-injection DBR lasers[J]. IEEE Photonics Technology Letters, 2015, 27(1): 50-53.

【47】Zhou D B, Liang S, Han L S, et al. Widely tunable two-section directly modulated DBR lasers for TWDM-PON system[J]. Chinese Physics Letters, 2017, 34(3): 034204.

【48】Li J, Kuksenkov D V, Liu W, et al. Wavelength tunable high-power single-mode 1060-nm DBR lasers[J]. Proceedings of SPIE, 2012, 8277: 82771L.

【49】Coldren L A. Monolithic tunable diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 988-999.

【50】Ishii H, Tanobe H, Kano F, et al. Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser[J]. Electronics Letters, 1996, 32(5): 454-455.

【51】Jayaraman V, Mathur A, Coldren L A, et al. Extended tuning range in sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 1993, 5(5): 489-491.

【52】Lee S L, Tauber D A, Jayaraman V, et al. Dynamic responses of widely tunable sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 1996, 8(12): 1597-1599.

【53】Simsarian J E, Larson M C, Garrett H E, et al. Less than 5-ns wavelength switching with an SG-DBR laser[J]. IEEE Photonics Technology Letters, 2006, 18(1/2/3/4): 565-567.

【54】Tawfieq M, Wenzel H, Brox O, et al. Concept and numerical simulations of a widely tunable GaAs-based sampled-grating diode laser emitting at 976 nm[J]. IET Optoelectronics, 2017, 11(2): 73-78.

【55】Brox O, Tawfieq M, Della Casa P, et al. Realisation of a widely tunable sampled grating DBR laser emitting around 970 nm[J]. Electronics Letters, 2017, 53(11): 749-750.

【56】Ishii H, Tohmori Y, Tamamura T, et al. Super-structure-grating (SSG) for broadly tunable DBR lasers[J]. IEEE Photonics Technology Letters, 1993, 5(4): 393-395.

【57】Gotoda M, Nishimura T, Tokuda Y. Widely tunable SOA-integrated DBR laser with combination of sampled-grating and superstructure grating[C]∥19th International Semiconductor Laser Conference, September 21-25, 2004, Matsue-shi, Japan. New York: IEEE, 2004: 147-148.

【58】Guo D K, Li J Y, Cheng L W, et al. Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors[J]. Photonics, 2016, 3(25): 3020025.

【59】Chen T, Qian Y J, Shi Y C, et al. Widely tunable semiconductor laser based on step-chirped sampled Bragg grating[C]∥14th International Conference on Optical Communications and Networks, July 3-5, 2015, Nanjing, China. New York: IEEE, 2015: 1-3.

【60】Aho A T, Viheril J, Korpijarvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2023-2026.

【61】Paschke K, Bugge F, Blume G, et al. High-power diode lasers at 1178 nm with high beam quality and narrow spectra[J]. Optics Letters, 2015, 40(1): 100-102.

【62】Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12. 7 W of optical output power[J]. Proceedings of SPIE, 2016, 9796: 97671I.

【63】Müller A, Zink C, Fricke J, et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of SPIE, 2017, 10123: 101231B.

【64】Müller A, Zink C, Ginolas A, et al. 10. 5 W central lobe output power obtained with an efficient 1030 nm DBR tapered diode laser[C]∥2017 IEEE High Power Diode Lasers and Systems Conference (HPD), October 11-12, 2017, Coventry, UK. New York: IEEE, 2017: 61-62.

【65】Müller A, Zink C, Fricke J, et al. Comparison for 1030 nm DBR tapered diode lasers with 10 W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering[J]. Proceedings of SPIE, 2018, 10553: 105531G.

引用该论文

Fan Jie,Gong Chunyang,Yang Jingjing,Zou Yonggang,Ma Xiaohui. Research Progress of Distributed Bragg Reflector Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060003

范杰,龚春阳,杨晶晶,邹永刚,马晓辉. 分布布拉格反射器半导体激光器的研究进展[J]. 激光与光电子学进展, 2019, 56(6): 060003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF