首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:60401--1)

基于统计特征和桥梁方法的红外弱小目标检测算法

Infrared Dim Target Detection Based on Statistical Characteristics and Bridge Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了更有效地检测出红外弱小目标,通过分析红外图像中弱小目标与其邻域背景的特征差异性,提出了一种基于统计特征和桥梁方法的红外小目标检测算法。在滑动窗口范围内提取像素值的均值、方差等特征,根据这些统计特征和桥梁方法判断该窗口范围内有无红外小目标;如果存在小目标,记录下其位置;对小目标区域进行二次筛选。研究结果表明,所提算法相对于较经典算法,虚警率降低了58%以上。

Abstract

In order to detect dim the small infrared targets more effectively, a small infrared target detection algorithm based on statistical features and bridge method is proposed by analyzing the difference between the small dim infrared targets in infrared images and their neighborhood backgrounds. The mean value, variance and other characteristics of pixel values are extracted in the sliding window range. According to these statistical characteristics and the bridge method, whether there are small infrared targets in the window range is determined. If there is a small target, its location is recorded, and then the small target area is screened twice. The research results show that the false alarm rate of the proposed algorithm is 58% lower than that of the classical algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/lop56.060401

所属栏目:探测器

基金项目:国家自然科学基金(60902067)、吉林省重大科技攻关项目(11ZDGG001)

收稿日期:2018-09-13

修改稿日期:2018-09-17

网络出版日期:2018-09-30

作者单位    点击查看

韩志华:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春130033中国科学院大学, 北京 100049
刘晶红:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春130033
徐芳:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春130033中国科学院大学, 北京 100049

联系人作者:刘晶红(liu1577@126.com); 韩志华(hanzhihua1234@126.com);

【1】Gao J L, Li H, Zheng C Y. Multiwavelet multi-resolution texture analysis based small detection in infrared image[J]. Infrared Technology, 2003, 25(6): 25-27.
高景丽, 李红, 郑成勇. 基于向量小波多尺度纹理分析的红外小目标检测[J]. 红外技术, 2003, 25(6): 25-27.

【2】Sun Y Q, Li S L, Tian J W, et al. LS-SVM based dim and small infrared target dual-band fusion detection[J]. Proceedings of SPIE, 2007, 6795: 67953J.

【3】Gao J L, Wen C L, Liu M Q. Robust small target co-detection from airborne infrared image sequences[J]. Sensors, 2017, 17(10): 2242.

【4】Sokolnikov A. Time series modeling for automatic target recognition[J]. Proceedings of SPIE, 2012, 8391: 839104.

【5】Wang X, Bi D Y. Dim targets detection based on local character information measurement[J]. Computer Engineering, 2007, 33(12): 19-21, 24.
王勋, 毕笃彦. 一种新的基于局部特征统计的小目标检测方法[J]. 计算机工程, 2007, 33(12): 19-21, 24.

【6】Wu T, He W Z, Chen X L. Detection algorithm of single frame infrared small target based on local features[J].Laser & Infrared, 2016, 46(3): 368-371.
吴涛, 何文忠, 陈晓露. 基于局部特征的单帧红外小目标检测算法[J]. 激光与红外, 2016, 46(3): 368-371.

【7】Wu Y Q, Ji S X, Zhan B C. Infrared dim target detection based on nonsubsampled Contourlet transform and independent component analysis[J]. Acta Optica Sinica, 2011, 31(5): 0510002.
吴一全, 纪守新, 占必超. 基于无下采样Contourlet变换和独立分量分析的红外弱小目标检测[J]. 光学学报, 2011, 31(5): 0510002.

【8】Qi S X, Ma J, Tao C, et al. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 495-499.

【9】Wu Y Q, Zhou Y, Long Y L. Small target detection in hyperspectral remote sensing image based on adaptive parameter SVM[J]. Acta Optica Sinica, 2015, 35(9): 0928001.
吴一全, 周杨, 龙云淋. 基于自适应参数支持向量机的高光谱遥感图像小目标检测[J]. 光学学报, 2015, 35(9): 0928001.

【10】Quan L, Pei D, Wang B, et al. Research on human target recognition algorithm of home service robot based on Fast-RCNN[C]∥International Conference on Intelligent Computation Technology and Automation, October 9-10, 2017, Changsha. New York: IEEE, 2017: 369-373.

【11】Chen C L P, Li H, Wei Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581.

【12】Zhao J F, Feng H J, Xu Z H, et al. Real-time automatic small target detection using saliency extraction and morphological theory[J]. Optics & Laser Technology, 2013, 47(4): 268-277.

【13】Wang X Y, Peng Z M, Zhang P, et al. Infrared small target detection via nonnegativity-constrained variational mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1700-1704.

【14】Yang C C, Ma J Y, Zhang M F, et al. Multiscale facet model for infrared small target detection[J]. Infrared Physics & Technology, 2014, 67: 202-209.

【15】Mao X, Diao W H. Criterion to evaluate the quality of infrared small target images[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(1): 56-64.

【16】Liu J, Ji H B. An improved robust estimation algorithm for small IR target detection[C]∥IEEE Symposium on Industrial Electronics & Applications, October 4-6, 2009, Kuala Lumpur, Malaysia. New York: IEEE, 2009: 394-398.

【17】Shi Y F, Wei Y T, Yao H, et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 33-37.

【18】Wang Y H, Xu X P, Yue N N, et al. Small target detection using edge-preserving background estimation based on maximum patch similarity[J]. International Journal of Advanced Robotic Systems, 2017, 14(6): 1-11.

【19】Dong X B, Huang X S, Zheng Y B, et al. Infrared dim and small target detecting and tracking method inspired by Human Visual System[J]. Infrared Physics & Technology, 2014, 62: 100-109.

【20】Zhang Y, Shi Z G, Qiu T W. Infrared small target detection method based on decomposition of polarization information[J]. Journal of Electronic Imaging, 2017, 26(3): 033004.

【21】Bi Y G, Bai X Z, Jin T, et al. Multiple feature analysis for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1333-1337.

【22】Deng H, Sun X P, Liu M L, et al. Infrared small-target detection using multiscale gray difference weighted image entropy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 60-72.

【23】Li A D, Lin Z P, An W, et al. Infrared small target detection in compressive domain based on self-adaptive parameter configuration[J]. Chinese Journal of Lasers, 2015, 42(10): 1008003.
李安冬, 林再平, 安玮,等. 基于自适应改进的压缩域红外弱小目标检测[J]. 中国激光, 2015, 42(10): 1008003.

引用该论文

Han Zhihua,Liu Jinghong,Xu Fang. Infrared Dim Target Detection Based on Statistical Characteristics and Bridge Method[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060401

韩志华,刘晶红,徐芳. 基于统计特征和桥梁方法的红外弱小目标检测算法[J]. 激光与光电子学进展, 2019, 56(6): 060401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF