首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:62801--1)

激光扫描数据的密集噪声剔除方法

Method for Filtering Dense Noise from Laser Scanning Data

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了有效剔除地面激光扫描数据中的大范围密集噪声,同时保留建筑物边缘特征,提出了一种基于距离变化并融合点云强度与密度信息的去噪方法。分析了噪声空间分布特征和点云强度分布,基于水平角和竖直角建立空间四叉树索引,在叶子节点内基于点前后间距特征实现局部点的快速聚类和孤立噪声剔除,在同类点集中基于不同类别强度点数的比值剔除大范围密集噪声。研究结果表明,所提算法能够有效剔除地面激光扫描数据中存在的大范围密集噪声,精度达90%以上。

Abstract

To remove the large-scale and dense noise from the terrestrial laser scanning data and keep the edge features of buildings, a filtering method fusing intensity with density of points is proposed based on the varied distance of the points to the scanning stations. The spatial distribution of noise and the intensity distribution of point clouds are analyzed comprehensively. The spatial quadtree index is established based on the horizontal and vertical angles. The fast clustering of local points and the removal of isolated points are realized based on the account of the distance before and after points in the leaf nodes, and the large-scale and dense noise is filtered out according to the ratio among different types of intensity point numbers in the same point set. The research results show that the proposed method can be used to effectively filter out the large-scale and dense noise involved in the terrestrial laser scanning data with an accuracy of above 90%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751

DOI:10.3788/lop56.062801

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41628101,41871264)

收稿日期:2018-09-14

修改稿日期:2018-09-24

网络出版日期:2018-09-29

作者单位    点击查看

陈世超:中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
戴华阳:中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
王成:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094
习晓环:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094
管力:中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083

联系人作者:习晓环(xixh@radi.ac.cn)

【1】Zhang L S, Cheng X J. Tunnel deformation analysis based on lidar points[J]. Chinese Journal of Lasers, 2018, 45(4): 0404004.
张立朔, 程效军. 基于激光点云的隧道形变分析方法[J]. 中国激光, 2018, 45(4): 0404004.

【2】Zhang T, Chen X J. Bridge amplitude monitoring with three-dimensional laser scanning technology[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051409.
章涛, 陈西江. 利用三维激光扫描技术监测桥梁振幅[J]. 激光与光电子学进展, 2018, 55(5): 051409.

【3】Cai Y, Xu W B, Liang D, et al. Distinguishing phyllostachys edulis age based on laser scanning intensity[J]. Chinese Journal of Lasers, 2018, 45(1): 0110003.
蔡越, 徐文兵, 梁丹, 等. 基于激光回波强度判别毛竹年龄[J]. 中国激光, 2018, 45(1): 0110003.

【4】Landa J, Procházka D, astn J. Point cloud processing for smart systems[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2013, 61(7): 2415-2421.

【5】Han X F, Jin J S, Wang M J, et al. A review of algorithms for filtering the 3D point cloud[J]. Signal Processing: Image Communication, 2017, 57: 103-112.

【6】Zaman F, Wong Y P, Ng B Y. Density-based denoising of point cloud[C]∥9th International Conference on Robotic, Vision, Signal Processing and Power Applications, February 2-3, 2016, Penang, Malaysia. Singapore: Springer Singapore, 2016: 287-295.

【7】Mattei E, Castrodad A. Point cloud denoising via moving RPCA[J]. Computer Graphics Forum, 2017, 36(8): 123-137.

【8】Xiao C X, Miao Y W, Liu S, et al. A dynamic balanced flow for filtering point-sampled geometry[J]. The Visual Computer, 2006, 22(3): 210-219.

【9】Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising[J]. ACM Transactions on Graphics, 2003, 22(3): 950-953.

【10】Moorfield B, Haeusler R, Klette R. Bilateral filtering of 3D point clouds for refined 3D roadside reconstructions[M]. Cham: Springer International Publishing, 2015: 394-402.

【11】Li W L, Xie H, Zhang G, et al. Adaptive bilateral smoothing for a point-sampled blade surface[J]. ASME Transactions on Mechatronics, 2016, 21(6): 2805-2816.

【12】Zhao C, Shi Y L, Cheng J T. A new near point denoising algorithm for point cloud[J]. Advanced Materials Research, 2012, 479/480/481: 2152-2156.

【13】Smítka V, troner M. 3D scanner point cloud denoising by near points surface fitting[J]. Proceedings of SPIE, 2013, 8791: 87910C.

【14】Cao S, Yue J P, Ma W. Bilateral filtering denoise algorithm for point cloud based on feature selection[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(S2): 351-354.
曹爽, 岳建平, 马文. 基于特征选择的双边滤波点云去噪算法[J]. 东南大学学报(自然科学版), 2013, 43(S2): 351-354.

【15】Shao Q, Xu T, Yoshino T, et al. Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4): 123-131.

【16】Haque S, Govindu V M. Robust feature-preserving denoising of 3D point clouds[C]∥IEEE International Conference on 3D Vision, October 25-28, 2016, Stanford, CA, USA. New York: IEEE, 2016: 83-91.

【17】Zhang Y, Lyu X Q. A three-dimensional diffusion filtering model establishment and analysis for point cloud intensity noise[J]. Journal of Computing and Information Science in Engineering, 2017, 17(1): 011010.

【18】Zhao K, Xu Y C, Li Y L, et al. Large-scale scattered point cloud denoising method based on VG-DBSCAN algorithm[J]. Acta Optica Sinica, 2018, 38(10): 1028001.
赵凯, 徐友春, 李永乐, 等. 基于VG-DBSCAN算法的大场景散乱点云去噪[J]. 光学学报, 2018, 38(10): 1028001.

【19】Sveier A, Kleppe A L, Tingelstad L, et al. Object detection in point clouds using conformal geometric algebra[J]. Advances in Applied Clifford Algebras, 2017, 27(3): 1961-1976.

【20】Zhang K,Qiao S Q, Gao K. A new point cloud reconstruction algorithm based-on geometrical features[C]∥ 2015 7th International Conference on Modelling, Identification and Control (ICMIC), December 18-20, 2015, Sousse, Tunisia. New York: IEEE, 2015: 297-302.

【21】Li P F, Wu H E, Jing J F, et al. Noise classification denoising algorithm for point cloud model[J]. Computer Engineering and Applications, 2016, 52(20): 188-192.
李鹏飞, 吴海娥, 景军锋, 等. 点云模型的噪声分类去噪算法[J]. 计算机工程与应用, 2016, 52(20): 188-192.

【22】Giradeau M D,Bougacha S,Bey A, et al. Cloud compare[CP/OL]. (2018-02-04)[2018-02-05]. http:∥www.cloudcompare.org/.

【23】Li R Z, Yang M, Ran Y, et al. Point cloud denoising and simplification algorithm based on method library[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011008.
李仁忠, 杨曼, 冉媛, 等. 基于方法库的点云去噪与精简算法[J]. 激光与光电子学进展, 2018, 55(1): 011008.

【24】Zhu X X, Wang C, Xi X H, et al. Hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 153-160.
朱笑笑, 王成, 习晓环, 等. 多级移动曲面拟合的自适应阈值点云滤波方法[J]. 测绘学报, 2018, 47(2): 153-160.

引用该论文

Chen Shichao,Dai Huayang,Wang Cheng,Xi Xiaohuan,Guan Li. Method for Filtering Dense Noise from Laser Scanning Data[J]. Laser & Optoelectronics Progress, 2019, 56(6): 062801

陈世超,戴华阳,王成,习晓环,管力. 激光扫描数据的密集噪声剔除方法[J]. 激光与光电子学进展, 2019, 56(6): 062801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF