光谱学与光谱分析, 2019, 39 (1): 79, 网络出版: 2019-03-17  

红外光谱在微藻领域的应用研究进展

Application of Infrared Spectroscopy in Microalgal Research
刘京华 1,2,*陈军 3秦松 3戚泽明 4黄青 1,2,4
作者单位
1 安徽科技学院生命科学学院, 安徽 凤阳 233100
2 中国科学院合肥物质科学研究院技术生物所, 安徽 合肥 230031
3 中国科学院烟台海岸带研究所, 山东 烟台 264003
4 中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
摘要
微藻富含类胡萝卜素、 维生素、 蛋白质、 多不饱和脂肪酸等多种人体和动物所必需的营养成分, 同时在水生态系统的维持和保护中也扮演着重要的角色, 因此开展微藻生物学的研究具有十分重要的实际应用价值。 传统的微藻成分的检测分析需要经过微藻细胞研磨破碎、 有机溶剂分离提取、 液(气)相检测等一系列的繁琐的操作步骤, 有费时、 需要高昂的仪器设备、 操作过程复杂等缺点, 因此需要发展更加快速高效的微藻细胞组分检测分析技术。 红外光谱作为一种高效的物质检测和分析手段可以实现对微藻样品中的蛋白、 脂类、 核酸、 多糖、 叶绿素、 类胡萝卜素等多种成分同时分析, 具有简单、 快速和无损检测等优势, 特别是结合显微镜技术的红外光谱成像可以在微空间尺度上研究单一细胞或组织中各组分的变化。 近年来, 尤其是随着同步辐射技术的迅速发展, 为红外光谱仪器提供质量更好、 能量更高的同步辐射光源, 使得红外光谱显微光谱及成像检测技术具有更高的灵敏度和空间分辨率, 实现了能够在细胞和亚细胞尺度上对个体进行高空间分辨的原位观测, 这在一定程度上解决了许多常规的检测分析技术不能同时兼顾高通量测量和高空间分辨率观察之间的矛盾。 首先介绍了红外光谱技术的原理及其特点并分析了显微红外光谱及成像技术在生物样品检测中的独特优势, 特别介绍红外光谱结合化学计量学的分析方法在生物学研究领域的应用。 接下来综述了此项技术在分类鉴定、 生长代谢监测、 育种、 水环境、 食品医药等与微藻相关领域国内外的应用研究进展。 比如, 结合化学计量学方法红外光谱能够进行微藻的快速鉴定、 判别和分类。 利用红外光谱多组分快速检测的优势, 可以实现微藻生长代谢的研究。 基于红外光谱无损、 高效检测的特点, 可以实现油脂、 β-胡萝卜素、 虾青素等高产藻株的快速筛选。 另外, 微藻还可以有效地吸附废水中的重金属和有机活性染料, 利用红外光谱可以对其吸附和降解环境污染物的机理进行研究。 红外光谱还能够快速高效地实现微藻成分的分析和鉴定, 因而可以用于微藻食品药品质量的检测和真伪的鉴定。 然而, 红外光谱在微藻的研究和应用方面还处于发展阶段, 尚存在着一定的缺点和不足, 对此进行了讨论和分析并提供了相应的解决方案。 最后, 对红外光谱在微藻的规模化养殖、 高产藻株的筛选、 微藻的生理、 细胞器的结构和功能的研究等领域进行了展望。
Abstract
Microalgae are rich in carotenoids, vitamins, proteins, polyunsaturated fatty acids and other nutrients required by humans and animals. In addition, some microalgae also play critical roles in aquatic ecological environment. Thus, it is important to carry out microalgal research for practical applications. Traditionally, analysis of microalgal components requires cell disruption and extraction with organic solvents followed by gas or liquid chromatography of the extracts. However, these traditional methods are generally time-consuming, requiring expensive instruments and sophisticated operations. So it is urgent to develop a more effective method for rapid and convenient microalgal analysis. Infrared spectroscopy mainly relies on the absorbance of radiation at molecular vibrational frequencies to observe the changes of the molecular compositions, characteristics, structures and concentrations. Actually, this technique has emerged as a promising tool to distinguish and quantify various cellular components such as proteins, lipids, nucleic acids, carbohydrates, chlorophyll and carotenoids in microalgal systems. Compared with the conventional detection methods, it has the advantages of simple, fast, non-invasive, and multiplex measurements. Especially, with the development of microscopic imaging technology, infrared microspectroscopy shows the powerful potential for spatially-resolved and real-time in situ measurements of biological systems at the single cell or tissue level. In recent years, with the development of synchrotron radiation technique, the advanced synchrotron infrared microspectroscopy and imaging technique has been applied and it can provide higher sensitivity and spatial resolution than the traditional infrared spectroscopy, so to a certain degree it resolves the contradiction between high throughput analysis and high spatial resolution observation. In this study, the principle and advantages of infrared spectroscopy and micro-spectroscopic imaging were firstly illustrated, especially the application of this technique combined with chemometrics in the field of biology. Then, the recent progress on the application of infrared spectroscopy in discrimination, metabolism, breeding, water environment protection, medicine and health relating to microalgal research was introduced and discussed in review of a variety of recent literature. For instance, infrared spectroscopy in combination with chemometrics can identify, discriminate or classify different microalgal strains. This technique can also be applied in the research of microalgal growth and metabolism based on its advantages of fast and multicomponent analysis. It can even provide a non-destructive and high-throughput method to screen the lipids, β-carotene or astaxanthin hyperproducing microalgal strains based on infrared spectroscopic tool. In addition, microalgae have been reported to be potentially proper biosorbents for the treatment of heavy metals and dyes wastewater. Actually, infrared spectroscopy has already been applied as a proper approach to study biosorption of heavy metals or dyes from wastewaters using microalgae. Being a powerful tool, it has not only distinguished and quantified various vital components quickly and conveniently, but has also provided an effective method for quality detection and authenticity measurement of microalgal foods and drugs. Although there are still some deficiencies for the application of infrared spectroscopy in microalgal research, the promising potential and comprehensive resolution for it are discussed in this study. Finally, based on the latest progress and application of infrared spectroscopy, some prospects of this technique for microalgal research were also put forward at the end of the review, such as industrial large-scale culture of microalgae, selection and breeding of hyperproducing strains, the physiology of microalgae, the molecular structure and function of organelles, etc.

刘京华, 陈军, 秦松, 戚泽明, 黄青. 红外光谱在微藻领域的应用研究进展[J]. 光谱学与光谱分析, 2019, 39(1): 79. LIU Jing-hua, CHEN Jun, QIN Song, QI Ze-ming, HUANG Qing. Application of Infrared Spectroscopy in Microalgal Research[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 79.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!