首页 > 论文 > 红外与毫米波学报 > 38卷 > 1期(pp:50-54)

柔性可弯曲人工超构材料太赫兹波超吸收研究

Flexible matesurface-based Terahertz super-absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来, 由亚波长人工微结构单元组成的超构材料, 因其具有自然材料所不具备的奇特物理性质, 吸引了人们的广泛关注.其中最有趣的应用之一就是利用亚波长人工微结构增强对电磁波的吸收.设计并实现了一种人工超构材料柔性可弯曲的高性能太赫兹吸收器.为了实现最优的结构设计, 分别对器件的结构周期、金属条宽度、介质层厚度和材料光学性质等关键结构及材料参数进行了系统优化.实验结果显示在频率3 THz附近器件峰值吸收率高达99%, 与数值模拟结果相吻合.

Abstract

In recent years, Metamaterials, artificial electromagnetic materials that are constructed by sub-wavelength units, have demonstrated unusual abilities to manipulate electromagnetic waves and promised many potential applications. One of the most intriguing applications of metamaterials is to function as high performance absorbing medium. In this work, a new type of plasmonic flexible metasurface-based super-absorber for Terahertz waves is designed, fabricated and characterized. Dependences of absorption on the optical properties of component materials and geometric parameters are optimized by full-wave numerical simulations, and then confirmed by experiments. Experimental results show that an absorption peak value of 99% is obtained at the frequency of 3 THz, which are in good agreement with numerical simulations.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN214

DOI:10.11972/j.issn.1001-9014.2019.01.009

基金项目:国家自然科学基金项目(61471345); 上海市“科技创新行动计划” (14PJ1409500)

收稿日期:2018-06-05

修改稿日期:2018-12-05

网络出版日期:--

作者单位    点击查看

潘晓航:上海大学 材料科学与工程学院, 上海 200444中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
许昊:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
俞伟伟:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
沈宏:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
郝加明:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
孙艳:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
沈悦:上海大学 材料科学与工程学院, 上海 200444
孟祥建:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
戴宁:中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083

联系人作者:潘晓航(xhpan@shu.edu.cn)

备注:潘晓航(1991-), 女, 河南汝州人, 硕士研究生, 超构材料微结构增强吸收. E-mail: xhpan@shu.edu.cn

【1】Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

【2】Kleine-Ostmann T, Nagatsuma T. A Review on Terahertz Communications Research[J]. Journal of Infrared Millimeter and Terahertz Waves, 2011, 32(2): 143-171.

【3】Anonymous. Terahertz Physics, Devices and Systems X: Advanced Applications in Industry and Defense[C]. Baltimore: Proceedings of the SPIE, 2016.

【4】Fischer B M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy[J]. Physics in Medicine and Biology, 2002, 47(21): 3807-3814.

【5】Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J]. Physics in Medicine and Biology, 2002, 47(21): 3853-3863.

【6】Smye S W, Chamberlain J M, Fitzgerald A J, et al. The interaction between Terahertz radiation and biological tissue[J]. Physics in Medicine and Biology, 2001, 46(9): R101-R112.

【7】Siegel P H. Terahertz technology in biology and medicine[J]. Ieee Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438-2447.

【8】CAO Jun-Cheng, Research progress of terahertz sources and detectors[J]. Journal of Functional Materials and Devices(曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报),2003(02):111-117.

【9】ZHAO Guo-Zhong. Progress on terahertz science and technology[J]. Foreign Electronic Measurement Technology (赵国忠.太赫兹科学技术研究的新进展.国外电子测量技术),2014,33(02):1-6.

【10】Ye Yu-Quan, Jin Yi, He Sai-lin. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B-Optical Physics, 2010, 27(3): 498-504.

【11】Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Physical Review B, 2009, 79(3):033101.

【12】Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

【13】Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

【14】Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

【15】Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.

【16】Szabo Z, Park G-H, Hedge R, et al. A Unique Extraction of Metamaterial Parameters Based on Kramers-Kronig Relationship[J]. Ieee Transactions on Microwave Theory and Techniques, 2010, 58(10): 2646-2653.

【17】Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

【18】Liu X, Starr T, Starr A F, et al. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance[J]. Physical Review Letters, 2010, 104(20):207403.

【19】Hao J, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16).

【20】Xu X, Peng B, Li D, et al. Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing[J]. Nano Letters, 2011, 11(8): 3232-3238.

【21】Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17): 5.

【22】Zhu J, Ma Z, Sun W, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2):021102.

【23】LIU Yi, PENG Xiao-yu, WANG Zuo-bin, et al. Terahertz-wave Absorber Based on Metamaterial [J]. Infrared Technology (刘毅,彭晓昱,王作斌等, 基于超材料的太赫兹波吸波材料. 红外技术), 2015, 37(09):756-763.

【24】Neese B, Chu B, Lu S-G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008, 321(5890): 821-823.

【25】Lang S B, Muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers[J]. Applied Physics a-Materials Science & Processing, 2006, 85(2): 125-134.

【26】Bai M, Poulsen M, Sorokin A V, et al. Infrared spectroscopic ellipsometry study of vinylidene fluoride (70%)-trifluoroethylene (30%) copolymer Langmuir-Blodgett films[J]. Journal of Applied Physics, 2003, 94(1): 195-200.

引用该论文

PAN Xiao-Hang,XU Hao,YU Wei-Wei,SHEN Hong,HAO Jia-Ming,SUN Yan,SHEN Yue,MENG Xiang-Jian,DAI Ning. Flexible matesurface-based Terahertz super-absorber[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 50-54

潘晓航,许昊,俞伟伟,沈宏,郝加明,孙艳,沈悦,孟祥建,戴宁. 柔性可弯曲人工超构材料太赫兹波超吸收研究[J]. 红外与毫米波学报, 2019, 38(1): 50-54

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF