首页 > 论文 > High Power Laser Science and Engineering > 7卷 > 1期(pp:3--1)

Dynamic stabilization of plasma instability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the paper [Kawata, Phys. Plasmas 19, 024503 (2012)], based on a perturbation phase control. In general, instabilities emerge from the perturbations. Normally the perturbation phase is unknown, and so the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh–Taylor instability (RTI) and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Boris, Comments Plasma Phys. Control. Fusion 3, 1 (1977)] another mechanism was proposed to stabilize RTI, and was realized by the pulse train or the laser intensity modulation in laser inertial fusion [Betti et al., Phys. Rev. Lett. 71, 3131 (1993)]. In this latter mechanism, an oscillating strong force is applied to modify the basic equation, and consequently the new stabilization window is created. Originally the latter was proposed by Kapitza. We review the two stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1017/hpl.2018.61

基金项目:This work was partly supported by MEXT, JSPS Kakenhi 15K05359, ILE/Osaka University, CORE/Utsunomiya University, and Japan–U.S. Fusion Research Collaboration Program conducted by MEXT, Japan. This work was partly supported by the project ELITAS (CZ.02.1.01/0.0/0.0/16_013/0001793) and by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) both from European Regional Development Fund. This project has also partly received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 633053 (EURO fusion project CfP-AWP17-IFE-CEA-01). Computational resources were provided by the IT4Innovations Centre of Excellence under projects CZ.1.05/1.1.00/02.0070 and LM2011033 and by ECLIPSE cluster of ELI-Beamlines. The EPOCH code was developed as part of the UK EPSRC funded projects EP/G054940/1. The authors would like to appreciate X. F. Li, H. Katoh, J. Limpouch, O. Klimo, D. Margarone, Q. Yu, Q. Kong, S. Weber, S. Bulanov, and A. Andreev for their fruitful discussions on this subject.

收稿日期:2018-07-30

录用日期:2018-10-18

网络出版日期:2018-11-13

作者单位    点击查看

S. Kawata:Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
T. Karino:Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
Y. J. Gu:Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Za Slovankou 1782/3, 18200 Prague, Czech Republic

联系人作者:S. Kawata(kwt@cc.utsunomiya-u.ac.jp)

【1】G. H.Wolf,Phys. Rev. Lett.24, 444 (1970).

【2】F.Troyon?and R.Gruber,Phys. Fluids14, 2069 (1971).

【3】J. P.Boris,Comments Plasma Phys. Control. Fusion3, 1 (1977).

【4】R.Betti,R. L.McCrory,?and C. P.Verdon,Phys. Rev. Lett.71, 3131 (1993).

【5】A. R.Piriz,G. R.Prieto,I. M.Diaz,?and J. J. L.Cela,Phys. Rev. E82, 026317 (2010).

【6】A. R.Piriz,S. A.Piriz,?and N. A.Tahir,Phys. Plasmas18, 092705 (2011).

【7】S.Atzeni?and J.Meyer-Ter-Vehn,The Physics of Inertial Fusion (Oxford Science Pub., 2004).10.1093/acprof:oso/9780198562641.001.0001

【8】J.Nuckolls,L.Wood,A.Thiessen,?and G.Zimmmerman,Nature239, 139 (1972).

【9】M. H.Emery,J. H.Orens,J. H.Gardner,?and J. P.Boris,Phys. Rev. Lett.48, 253 (1982).

【10】S.Kawata?and K.Niu,J. Phys. Soc. Japan53, 3416 (1984).

【11】S.Kawata,Y.Iizuka,Y.Kodera,A. I.Ogoyski,?and T.Kikuchi,Nucl. Inst. Meth. Phys. Res. A606, 152 (2009).

【12】S.Kawata,T.Sato,T.Teramoto,E.Bandoh,Y.Masubichi,H.Watanabe,?and I.Takahashi,Laser Part. Beams11, 757 (1993).

【13】A.Bret,M.-C.Firpo,?and C.Deutsch,Phys. Rev. Lett.94, 115002 (2005).

【14】A.Bret,M.-C.Firpo,?and C.Deutsch,Phys. Rev. E70, 046401 (2004).

【15】T.Okada?and K.Niu,J. Phys. Soc. Japan50, 3845 (1981).

【16】T.Okada?and K.Niu,J. Plasma Phys.24, 483 (1980).

【17】R. F.Hubbard?and D. A.Tidman,Phys. Rev. Lett.41, 866 (1978).

【18】H.Qin,R. C.Davidson,?and B. G.Logan,Phys. Rev. Lett.104, 254801 (2010).

【19】R. C.Arnold,E.Colton,S.Fenster,M.Foss,G.Magelssen,?and A.Moretti,Nucl. Inst. Meth.199, 557 (1982).10.1016/0167-5087(82)90157-0

【20】S.Kawata,T.Karino,?and A. I.Ogoyski,Matter Radiat. Extremes1, 89 (2016).

【21】P. L.Kapitza,Soviet Phys. JETP21, 588 (1951).

【22】S.Kawata,Phys. Plasmas19, 024503 (2012).

【23】S.Kawata,Y. J.Gu,X. F.Li,T.Karino,H.Katoh,J.Limpouch,O.Klimo,D.Margarone,Q.Yu,Q.Kong,S.Weber,S.Bulanov,?and A.Andreev,Phys. Plasmas25, 011601 (2018).

【24】F. W.Olver,D. W.Lozier,R. F.Boisvert,?and C. W.Clark,NIST Handbook of Mathematical Functions (Cambridge University Press, New?York, 2010).

【25】T. J. B.Collins?and S.Skupsky,Phys. Plasmas9, 275 (2002).

【26】V. N.Goncharov,J. P.Knauer,P. W.McKenty,P. B.Radha,T. C.Sangster,S.Skupsky,R.Betti,R. L.McCrory,?and D. D.Meyerhofer,Phys. Plasmas10, 1906 (2003).

【27】H.Qing?and R. C.Davidson,Phys. Plasmas21, 064505 (2014).

【28】B. Y.Sharkov,D. H. H.Hoffmann,A. A.Golubev,?and Y.Zhao,Matter Radiat. Extremes1, 28 (2016).

【29】S.Kawata?and T.Karino,Phys. Plasmas22, 042106 (2015).

【30】T. Zh.Esirkepov?and S. V.Bulanov,Phys. Lett. A381, 2559 (2017).

【31】I. I.Blekhman,Vibrational Mechanics (World Scientific Publishing, Singapore, 2000).10.1142/4116

【32】R.Krechetnikov?and J. E.Marsden,Rev. Mod. Phys.79, 519 (2007).

引用该论文

S. Kawata, T. Karino, and Y. J. Gu, "Dynamic stabilization of plasma instability," High Power Laser Science and Engineering 7(1), e3 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF