首页 > 论文 > 激光与光电子学进展 > 56卷 > 7期(pp:70002--1)

二维层状钙钛矿材料及其应用研究进展

Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了二维层状钙钛矿材料的晶体结构及其基本光电特性; 总结了二维层状钙钛矿材料在太阳电池、发光二极管、光电探测器等领域的最新应用; 指出该类材料目前存在的主要问题和发展前景,以期为高性能二维层状钙钛矿光电器件的设计和制备提供参考。

Abstract

The crystal structure and optoelectrical properties of two-dimensional layered perovskite materials are introduced. The latest applications of two-dimensional layered perovskite materials in the fields of solar cells, light-emitting diodes and photodetectors are summarized. The main problems and future development prospects of these materials are given, aiming to guide the design and fabrication of high performance two-dimensional layered perovskite optoelectronic devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O472

DOI:10.3788/lop56.070002

所属栏目:综述

基金项目:国家自然科学基金(61775156,61605136,U1710115)、山西省自然科学基金(201601D021051,201701D211002)、青年三晋学者、霍英德教育青年教师基金、山西省重点研发(国际合作)项目(201603D421042)、山西省平台基地专项(201605D131038)

收稿日期:2018-08-21

修改稿日期:2018-09-25

网络出版日期:2018-10-26

作者单位    点击查看

韩娜:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024
冀婷:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024
崔艳霞:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024
李国辉:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024
张恒康:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024
郝玉英:太原理工大学物理与光电工程学院新型传感与智能控制教育部重点实验室, 山西 太原 030024

联系人作者:冀婷(jiting@tyut.edu.com); 崔艳霞(yanxiacui@gmail.com);

【1】D′innocenzo V, Grancini G, Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, 5: 3586.

【2】Hodes G. Perovskite-based solar cells[J]. Science, 2013, 342(6156): 317-318.

【3】Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.

【4】Gratzel M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842.

【5】Chen J N, Zhou S S, Jin S Y, et al. Crystal organometal halide perovskites with promising optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(1): 11-27.

【6】Wang Y, Zhang R. Photo detector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 0230002.
王燕, 张锐. 光电探测器特性在TDLAS气体检测中的影响[J]. 光学学报, 2016, 36(2): 0230002.

【7】Yan P Q, Meng W D, Wang Y R, et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080403.
颜佩琴, 孟文东, 王煜蓉, 等. 基于温漂自动补偿的高稳定性Si-APD单光子探测器[J]. 激光与光电子学进展, 2017, 54(8): 080403.

【8】Wang N N, Si J J, Jin Y Z, et al. Solution-processed organic-inorganic hybrid perovskites: a class of dream materials beyond photovoltaic applications[J]. Acta Chimica Sinica, 2015, 73(3): 171-178.
王娜娜, 司俊杰, 金一政, 等. 可溶液加工的有机-无机杂化钙钛矿: 超越光伏应用的“梦幻”材料[J]. 化学学报, 2015, 73(3): 171-178.

【9】Xue Q F, Sun C, Hu Z C, et al. Recent advances in perovskite solar cells: morphology control and interfacial engineering[J]. Acta Chimica Sinica, 2015, 73(3): 179-192.
薛启帆, 孙辰, 胡志诚, 等. 钙钛矿太阳电池研究进展: 薄膜形貌控制与界面工程[J]. 化学学报, 2015, 73(3): 179-192.

【10】Jin L F, Zhang Y T, Wang H Y, et al. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chinese Journal of Lasers, 2014, 41(10): 1008002.
金露凡, 张雅婷, 王海艳, 等. InGaAs PIN光电探测器的加速老化研究[J]. 中国激光, 2014, 41(10): 1008002.

【11】Song J Z, Xu L M, Li J H, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24): 4861-4869.

【12】Yang Y, You J B, Lei M. Efficient and stable perovskite solar cells with all solution processed metal oxide transporting layers: US 2008/0033983 Al[P]. 2018-02-01.

【13】Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692.

【14】Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5): 476-480.

【15】Yoo E J, Lyu M Q, Yun J H, et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices[J]. Advanced Materials, 2015, 27(40): 6170-6175.

【16】Kagan C R. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science, 1999, 286(5441): 945-947.

【17】Jiang J J, Cao F X, Wang K, et al. Effect of humidity on property and stability of perovskite solar cell[J]. Journal of Materials Science and Engineering, 2017, 35(2): 181-186.
蒋佳佳, 曹方旭, 王亢, 等. 湿度对钙钛矿太阳电池性能及其稳定性的影响[J]. 材料科学与工程学报, 2017, 35(2): 181-186.

【18】Patel J B, Milot R L, Wright A D, et al. Formation dynamics of CH3NH3PbI3 perovskite following two-step layer deposition[J]. The Journal of Physical Chemistry Letters, 2016, 7(1): 96-102.

【19】Ha S T, Liu X F, Zhang Q, et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844.

【20】Zhang Q, Ha S T, Liu X F, et al. Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10): 5995-6001.

【21】Xing J, Liu X F, Zhang Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7): 4571-4577.

【22】Galuskin E V, Gazeev V M, Armbruster T, et al. Lakargiite CaZrO3: a new mineral of the perovskite group from the north Caucasus, Kabardino-Balkaria, Russia[J]. American Mineralogist, 2008, 93(11/12): 1903-1910.

【23】Ji D H, Zhang Y, Wang S L, et al. First principle study of the B-site ordered structure perovskite BaFe0.5Nb0.5O3[J]. Journal of Hebei University (Natural Science Edition), 2017, 37(6): 595-604.
纪登辉, 张娅, 王淑玲, 等. 基于第一性原理的钙钛矿BaFe0.5Nb0.5O3B位的有序结构[J]. 河北大学学报(自然科学版), 2017, 37(6): 595-604.

【24】Ma Y Z, Wang S F, Zheng L L, et al. Recent research developments of perovskite solar cells[J]. Chinese Journal of Chemistry, 2014, 32(10): 957-963.

【25】Dou L,Wong A B, Yu Y L, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2013, 50(6): 795-810.

【26】Vlker S F, Collavini S, Delgado J L. Organic charge carriers for perovskite solar cells[J]. ChemSusChem, 2015, 8(18): 3012-3028.

【27】Amat A, Mosconi E, Ronca E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Letters, 2014, 14(6): 3608-3616.

【28】Jacobsson T J, Pazoki M, Hagfeldt A, et al. Goldschmidt′s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3[J]. The Journal of Physical Chemistry C, 2015, 119(46): 25673-25683.

【29】Collings I E, Hill J A, Cairns A B, et al. Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates[J]. Dalton Transactions, 2016, 45(10): 4169-4178.

【30】Fan Z, Sun K, Wang J. Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites[J]. Journal of Materials Chemistry A, 2015, 3(37): 18809-18828.

【31】Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.

【32】Milot R L, Sutton R J, Eperon G E, et al. Charge-carrier dynamics in 2D hybrid metal-halide perovskites[J]. Nano Letters, 2016, 16(11): 7001-7007.

【33】Cao D H, Stoumpos C C, Farha O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society, 2015, 137(24): 7843-7850.

【34】Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical Reviews, 2016, 116(21): 12956-13008.

【35】Wang H L, Lv W Z, Tang X X, et al. Two-dimensional perovskites and their applications on optoelectronic devices[J]. Progress in Chemistry, 2017, 29(8): 859-869.
王宏磊, 吕文珍, 唐星星, 等. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.

【36】Stoumpos C C, Cao D H, Clark D J, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials, 2016, 28(8): 2852-2867.

【37】Ishihara T. Optical properties of PbI-based perovskite structures[J]. Journal of Luminescence, 1994, 60/61: 269-274.

【38】Zhang Q, Su R, Du W N, et al. Advances in small perovskite-based lasers[J]. Small Methods, 2017, 1(9): 1700163.

【39】Gu L L, Tavakoli M M, Zhang D Q, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires[J]. Advanced Materials, 2016, 28(44): 9713-9721.

【40】Zhou C K, Tian Y, Khabou O, et al. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40446-40451.

【41】Soufiani A M, Huang F Z, Reece P, et al. Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites[J]. Applied Physics Letters, 2015, 107(23): 231902.

【42】Wu K W, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films[J]. Physical Chemistry Chemical Physics, 2014, 16(41): 22476-22481.

【43】Sestu N, Cadelano M, Sarritzu V, et al. Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4566-4572.

【44】Takagi H, Kunugita H, Ema K. Influence of the image charge effect on excitonic energy structure in organic-inorganic multiple quantum well crystals[J]. Physical Review B, 2013, 87(12): 125421.

【45】Dammak T, Koubaa M, Boukheddaden K, et al. Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4]nanomaterial[J]. The Journal of Physical Chemistry C, 2009, 113(44): 19305-19309.

【46】Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors[J]. Physical Review B, 1992, 45(12): 6961-6964.

【47】Yaffe O, Chernikov A, Norman Z M, et al. Excitons in ultrathin organic-inorganic perovskite crystals[J]. Physical Review B, 2015, 92(4): 045414.

【48】Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 2016, 138(8): 2649-2655.

【49】Liu J X, Leng J, Wu K F, et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society, 2017, 139(4): 1432-1435.

【50】Byun J, Cho H, Wolf C, et al. Efficient visible quasi-2D perovskite light-emitting diodes[J]. Advanced Materials, 2016, 28(34): 7515-7520.

【51】Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites[J]. Chemphyschem, 2014, 15(17): 3733-3741.

【52】Estes W E, Losee D B, Hatfield W E. The magnetic properties of several quasi two-dimensional Heisenberg layer compounds: a new class of ferromagnetic insulators involving halocuprates[J]. The Journal of Chemical Physics, 1980, 72(1): 630-638.

【53】Zhang S J, Audebert P, Wei Y, et al. Synthesis and optical properties of novel organic-inorganic hybrid UV (R-NH3)2PbCl4 semiconductors[J]. Journal of Materials Chemistry, 2011, 21(2): 466-474.

【54】Cortecchia D, Neutzner S, Srimath K, et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation[J]. Journal of the American Chemical Society, 2017, 139(1): 39-42.

【55】Li L N, Sun Z H, Wang P, et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector[J]. Angewandte Chemie International Edition, 2017, 56(40): 12150-12154.

【56】Sun Z H, Liu X T, Khan T, et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects[J]. Angewandte Chemie International Edition, 2016, 55(22): 6545-6550.

【57】Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997.

【58】Li X, Ibrahim Dar M, Yi C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9): 703-711.

【59】Yang S, Wang Y, Liu P R, et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 2016, 1(2): 15016.

【60】Zhang F, Ye S, Hao Y Y, et al. Improving of CH3NH3PbI3 perovskite morphology and crystallinity using different annealing-atmosphere[J]. Journal of Synthetic Crystals, 2016, 45(9): 2215-2221.
张帆, 叶帅, 郝玉英, 等. 不同热处理氛围改善CH3NH3PbI3钙钛矿薄膜形貌和结晶[J]. 人工晶体学报, 2016, 45(9): 2215-2221.

【61】Wang Q, Dong Q F, Li T, et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells[J]. Advanced Materials, 2016, 28(31): 6734-6739.

【62】Wen X R, Wu J M, Ye M D, et al. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J]. Chemical Communications, 2016, 52(76): 11355-11358.

【63】Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235.

【64】Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903.

【65】Zhang F, Song J, Zhang L X, et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment[J]. Journal of Materials Chemistry A, 2016, 4(22): 8554-8561.

【66】Yao K, Wang X F, Xu Y X, et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell[J]. Chemistry of Materials, 2016, 28(9): 3131-3138.

【67】Tsai H, Nie W Y, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316.

【68】Mitzi D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials[J]. Journal of Materials Chemistry, 2011, 21: 466-474.

【69】Zhang X, Munir R, Xu Z, et al. Phase transition control for high performance Ruddlesden-Popper perovskite solar cells[J]. Advanced Materials, 2018, 30(21): 1707166.

【70】Zhang X, Ren X D, Liu B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 2017, 10(10): 2095-2102.

【71】Wang Z P, Lin Q Q, Chmiel F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J]. Nature Energy, 2017, 2(9): 17135.

【72】Yao K, Wang X F, Xu Y X, et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite[J]. Nano Energy, 2015, 18: 165-175.

【73】Ma C Y, Leng C Q, Ji Y X, et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J]. Nanoscale, 2016, 8(43): 18309-18314.

【74】Bai Y, Xiao S, Hu C, et al. Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh VOC enhanced stability in the p-i-n photovoltaics[J]. Advanced Energy Materials, 2017, 7(20): 1701038.

【75】Zhang T Y, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI 3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 2017, 3(9): e1700841.

【76】Liao J F, Rao H S, Chen B X, et al. Dimension engineering on Cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 2066-2072.

【77】Lin Y, Bai Y, Fang Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 654-658.

【78】Sendner M, Nayak P K, Egger D A, et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport[J]. Materials Horizons, 2016, 3(6): 613-620.

【79】Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834.

【80】Hu H W, Salim T, Chen B B, et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes[J]. Scientific Reports, 2016, 6: 33546.

【81】Shirasaki Y, Supran G J, Tisdale W A, et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes[J]. Physical Review Letters, 2013, 110(21): 217403.

【82】Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.
陈雯柏, 马航, 叶继兴, 等. 量子点发光二极管的研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

【83】Bae W K, Park Y S, Lim J, et al. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications, 2013, 4: 2661.

【84】Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Applied Physics Letters, 2007, 91(18): 183507.

【85】Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature Photonics, 2013, 7(5): 407-412.

【86】Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250.

【87】Hoke E T, Slotcavage D J, Dohner E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617.

【88】Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4[J]. Applied Physics Letters, 1994, 65(6): 676-678.

【89】Chondroudis K, Mitzi D B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers[J]. Chemistry of Materials, 1999, 11(11): 3028-3030.

【90】Dohner E R, Hoke E T, Karunadasa H I. Self-assembly of broadband white-light emitters[J]. Journal of the American Chemical Society, 2014, 136(5): 1718-1721.

【91】Dohner E R, Jaffe A, Bradshaw L R, et al. Intrinsic white-light emission from layered hybrid perovskites[J]. Journal of the American Chemical Society, 2014, 136(38): 13154-13157.

【92】Liang D, Peng Y L, Fu Y P, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates[J]. ACS Nano, 2016, 10(7): 6897-6904.

【93】Xiao Z G, Kerner R A, Zhao L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 2017, 11(2): 108-115.

【94】Zhang S T, Yi C, Wang N N, et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells[J]. Advanced Materials, 2017, 29(22): 1606600.

【95】Tian Y, Zhou C K, Worku M, et al. Light-emitting diodes: highly efficient spectrally stable red perovskite light-emitting diodes[J]. Advanced Materials, 2018, 30(20): 1870142.

【96】Jia G, Shi Z J, Xia Y D, et al. Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes[J]. Optics Express, 2018, 26(2): A66-A74.

【97】Yang X L, Zhang X W, Deng J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Communications, 2018, 9: 570.

【98】Tsai H, Nie W Y, Blancon J C, et al. Stable light-emitting diodes using phase-pure ruddlesden-popper layered perovskites[J]. Advanced Materials, 2018, 30(6): 1704217.

【99】Gao X Y, Zhang Y, Cui Y X, et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070001.
高秀云, 张叶, 崔艳霞, 等. 有机光电倍增探测器的研究进展[J]. 激光与光电子学进展, 2018, 55(7): 070001.

【100】Wang J J, Zhao Z P, Liu J G. Research progress and development trend of balanced photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100001.
王姣姣,赵泽平, 刘建国. 光平衡探测器研究进展和发展趋势分析[J]. 激光与光电子学进展, 2018, 55(10): 100001

【101】Ahmad S, Kanaujia P K, Beeson H J, et al. Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25227-25236.

【102】Zhou J, Chu Y, Huang J. Photodetectors based on two-dimensional layer-structured hybrid lead Iodide perovskite semiconductors[J]. ACS Applied Materials & Interfaces, 2016, 8 (39), 25660-25666.

【103】Tan Z J, Wu Y, Hong H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 2016, 138(51): 16612-16615.

引用该论文

Han Na,Ji Ting,Cui Yanxia,Li Guohui,Zhang Hengkang,Hao Yuying. Research Progress of Two-Dimensional Layered Perovskite Materials and Their Applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002

韩娜,冀婷,崔艳霞,李国辉,张恒康,郝玉英. 二维层状钙钛矿材料及其应用研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF