首页 > 论文 > 光子学报 > 48卷 > 3期(pp:316004--1)

MoO3/MoS2复合结构的制备及其光致变色性能

Preparation and Photochromic Properties of MoO3/MoS2 Composite Structures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以Na2MoO4·2H2O和C2H5HS为原料, 采用水热法和光照法制备了MoO3/MoS2复合结构.使用透射电子扫描显微镜、X射线衍射、X射线光电子能谱仪和紫外可见分光光度计等手段表征了样品的形貌、结构和光致变色性能.结果表明:所制备的样品呈纳米线束状结构.当Na2MoO4·2H2O和C2H5HS比例为1∶3时, 样品呈黄色; 当Na2MoO4·2H2O和C2H5HS比例为1∶3以下时, 样品呈蓝色.所制备样品具有光致变色效应, 当Na2MoO4·2H2O和C2H5HS比例为1∶2时, 材料的光致变色性能最好.优异的光致变色性能归因于MoO3/MoS2复合结构具有合适的能带结构, 从而有效地分离光生载流子, 抑制了电子和空穴的复合.

Abstract

MoO3/MoS2 composite structure was prepared by hydrothermal and illumination method. The morphology, structure and photochromic properties of the samples were characterized by TEM, XRD, XPS and UV-Vis spectrophotometer. The samples show nanowire bundle structure. The color of the sample is yellow with the ratio of Na2MoO4·2H2O to C2H5HS is 1∶3. While the color of the samples are blue when the ratio of Na2MoO4·2H2O to C2H5HS is below 1∶3. The prepared samples have photochromic effect. The photochromic property of MoO3/MoS2 is the best with the ratio of Na2MoO4·2H2O to C2H5HS is 1∶2. The excellent photochromic efficiency is attributed to the appropriate band structure of MoO3/MoS2 composite structure, which can effectively separate photogenerated carriers and suppressed the recombination of electrons and holes.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O616

DOI:10.3788/gzxb20194803.0316004

基金项目:安徽省高校自然科学基金 (No.KJ2015A150)

收稿日期:2018-11-12

修改稿日期:2019-01-21

网络出版日期:--

作者单位    点击查看

吴克跃:皖西学院 电气与光电工程学院, 安徽 六安 237012

联系人作者:吴克跃(wukeyue@wxc.edu.cn)

备注:吴克跃(1979-), 男, 副教授, 博士, 主要研究方向为半导体纳米材料及光电器件.

【1】LIU Yan. Preparation and properties of novel MoO3 electrochromic films. master thesis[D]. Changchun:University of Chinese Academy of Sciences, 2015.
刘岩. 新型MoO3电致变色薄膜的制备及性能研究[D].长春:中科学院大学, 2015.

【2】WANG Meng-jing, KOSKI K J. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation[J]. ACS Nano, 2015, 9(3): 3226-3233.

【3】YAMAZAKI S, SHIMIZU D, TANI S, et al. Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose[J]. ACS Applied Materials & Interfaces, 2018, 10 (23): 19889-19896.

【4】NISHIO S. Evidence for visible light photochromism of V2O5[J]. Chemistry of Materials, 2002, 14 (9): 3730-3733.

【5】WANG Ping-ping, SHEN Yi, ZHAO Li. Effect of heat-treatment temperature on structure and photochromic properties of MoO3 thin films[J]. Journal of the Chinese Ceramic Society, 2010, 38(2): 167-171.
王萍萍, 沈毅, 赵丽. 热处理温度对MoO3薄膜的结构及光致变色性能的影响[J]. 硅酸盐学报, 2010,38(2): 167-171.

【6】HE T, YAO J N. Photochromic materials based on tungsten oxide[J]. Journal of Materials Chemistry, 2017, 17(43): 4547-4557.

【7】AHMED H M F, BEGUM N S. Synthesis and characterization of MoO3-WO3 composite thin films by liquid phase deposition technique: investigation of its photochromic properties [J]. Bulletin of Materials Science, 2013, 36(1): 45-49.

【8】LI Ning, LI Ya-mei, ZHOU Yi-jie. Interfacial-charge-transfer-induced photochromism of MoO3@TiO2 crystalline-core amorphous-shell nanorods[J]. Solar Energy Materials & Solar Cells, 2017, 160: 116-125.

【9】RAO K S, MADHURI K V, UTHANNA S. Photochromic properties of double layer CdS/MoO3 nano-structured Films[J]. Materials Science and Engineering, 2003, 100(1): 79-86.

【10】SONG Shuai-shuai, WANG Jin-ming, PENG Tian-you. MoS2-MoO3-x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons[J]. Applied Catalysis B: Environmental, 2018, 228: 39

【11】LI Hong-lin, YU Ke, TANG Zheng. High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: from theory to experiment[J]. Physical Chemistry Chemical Physics, 2016, 18(20): 14074-14085.

【12】YIN Zong-you, ZHANG Xiao, CAI Yong-qing. Preparation of MoS2–MoO3 hybrid nanomaterials for light-emitting diodes[J]. Angewandte Chemie International Edition, 2014, 53(46): 12560-12565.

【13】KATO S, ISHIKAWA R, KUBO Y. Efficient organic photovoltaic cells using hole-transporting MoO3 buffer layers converted from solution-processed MoS2 films[J]. Japanese Journal of Applied Physics, 2011, 50(7): 071604.

【14】PABLO M R, IGNACIO A F C, MANUEL A. A-MoO3 crystals with a multilayer stack structure obtained by annealing from a lamellar MoS2/g-C3N4 nanohybrid[J]. Nanomaterials, 2018, 8(7): 559-568.

【15】WANG Lei, JI Xiao-hong, WANG Ting. Novel red emission from MoO3/MoS2-MoO2-MoO3 core–shell belt surface[J]. ACS Applied Materials & Interfaces, 2018, 10 (42): 36297-36303.

【16】QIN Ping-li, FANG Guo-jia, KE Wei-jun. In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell[J]. Journal of Materials Chemistry A, 2014, 2: 2742

【17】GAO Rong-zhen, LI Xiao-dong, LIU Wen-feng. Synthesis and li-storage performance of hierarchical spheroid composites of MgFe2O4/C[J]. Chinese Journal of Materials Research, 2018, 32(9): 713-723.
高荣贞, 李晓冬, 刘文凤. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-723.

【18】FAUGHNAN B W, CRANDALL R S, HEYMAN P M. Electrochromism in WO3 amorphous films[J]. RCA Review, 1975, 36: 177-197.

【19】CHEN Wei-long, SHEN Hong-lie,WANG Wei. Study on preparation and photochromism of WO3-TiO2-ZnO colloid[J]. Journal of Synthetic Crystals, 2014, 43(12): 3113-3117.
陈伟龙, 沈鸿烈, 王威. WO3-TiO2 -ZnO溶胶的制备及其光致变色性能研究[J].人工晶体学报, 2014, 43(12): 3113-3117.

【20】KUMAR R, GOEL N, MISHRA M. Growth of MoS2-MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature[J]. Advanced Materials Interfaces, 2018, 5(10): 1800071.

引用该论文

WU Ke-yue. Preparation and Photochromic Properties of MoO3/MoS2 Composite Structures[J]. ACTA PHOTONICA SINICA, 2019, 48(3): 0316004

吴克跃. MoO3/MoS2复合结构的制备及其光致变色性能[J]. 光子学报, 2019, 48(3): 0316004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF