首页 > 论文 > 光学学报 > 39卷 > 4期(pp:428002--1)

地基高光谱微波辐射计反演大气相对湿度廓线的通道选择

Channel Selection for Inversion of Atmospheric Relative Humidity Profile from Ground-Based Hyperspectral Microwave Radiometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用微波辐射传输模型PWR(P. W. Rosenkranz)和反向传播神经网络方法, 分别构建了正演下行辐射亮温和反演大气相对湿度廓线的模型, 并研究了晴空条件下高光谱微波辐射计反演大气相对湿度廓线的通道选择问题。研究结果表明, 200个通道的信息含量大于微波辐射计7个通道的信息含量; 增加探测通道数量可提升大气相对湿度廓线的反演精度, 选取信息含量排在前面的120个通道进行仿真时, 在0~2 km和6~10 km高度范围内大气相对湿度廓线的反演精度提升了4%~10%, 在2~6 km高度范围内的相对湿度廓线的反演精度提升了约10%; 当通道数继续增加时, 反演精度的提升并不明显。

Abstract

The microwave radiative transfer modeling PWR (P. W. Rosenkranz) and back propagation neural network method are used to construct the models of forward modeling of downward radiance brightness temperature and inversion of atmospheric relative humidity profile respectively, and the channel selection of inversion of atmospheric relative humidity profile by hyperspectral microwave radiometer under clear sky conditions is studied. The research results show that the information content of 200 channels is greater than the information content of 7 channels of microwave radiometer and the increase of the detection channel can improve the inversion accuracy of the atmospheric relative humidity profile. When we use the first 120 channels of information content for simulation experiments, the inversion accuracy of the atmospheric relative humidity profile in the range of 0-2 km and 6-10 km increases by 4%~10%, and the inversion accuracy of the relative humidity profile in the range of 2-6 km increases by about 10%. When the channel continues to increase, the inversion accuracy of atmospheric relative humidity profile not improves much.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P141.5

DOI:10.3788/aos201939.0428002

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41575028, 41705007, 41605016, 41475019)

收稿日期:2018-07-19

修改稿日期:2018-09-17

网络出版日期:--

作者单位    点击查看

王玉训:国防科技大学气象海洋学院, 江苏 南京 211101
王蕊:国防科技大学气象海洋学院, 江苏 南京 211101
严卫:国防科技大学气象海洋学院, 江苏 南京 211101

联系人作者:王蕊(wangruissw@126.com)

【1】Tian L, Sun Y Q, Hu W D, et al. Preliminary analysis of the characteristics of atmosphere water vapor and cloud liquid water in Yinchuan area[J]. Plateau Meteorology, 2013, 32(6): 1774-1779.
田磊, 孙艳桥, 胡文东, 等. 银川地区大气水汽、云液态水含量特性的初步分析[J]. 高原气象, 2013, 32(6): 1774-1779.

【2】Breitenbach S F M, Adkins J F, Meyer H, et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India[J]. Earth and Planetary Science Letters, 2010, 292(1/2): 212-220.

【3】Song D S, Yun H S. Analysis of GPS precipitable water vapor variation during the influence of a typhoon EWINIAR[J]. Plant Physiology, 2006, 6(1): 29-35.

【4】Susskind J, Barnet C D, Blaisdell J M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 390-409.

【5】Sharma P, Indira R S, Mallick S, et al. IASI hyperspectral radiances in the NCMRWF 4D-VAR assimilation system: OSE[J]. Proceedings of SPIE, 2016, 9880: 98800P.

【6】Wu X, Yao Z G, Han Z G, et al. Retrieval of stratospheric temperatures from radiance measurements by infrared atmospheric sounding interferometer[J]. Infrared, 2016, 37(4): 11-17.
吴晓, 姚志刚, 韩志刚, 等. 利用IASI资料反演平流层大气温度[J]. 红外, 2016, 37(4): 11-17.

【7】Blackwell W J, Bickmeier L J, Leslie R V, et al. Hyperspectral microwave atmospheric sounding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(1): 128-142.

【8】Blackwell W J, Galbraith C, Hancock T, et al. Design and analysis of a hyperspectral microwave receiver subsystem[C]. IEEE International Geoscience and Remote Sensing Symposium, 2012: 3435-3438.

【9】Blackwell W J, Leslie R V, Pieper M L, et al. Improved all-weather atmospheric sounding using hyperspectral microwave observations[C]. IEEE International Geoscience and Remote Sensing Symposium, 2010: 734-737.

【10】Mahfouf J F, Birman C, Aires F, et al. Information content on temperature and water vapour from a hyper-spectral microwave sensor[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(693): 3268-3284.

【11】Aires F, Prigent C, Orlandi E, et al. Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: the clear-sky case[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(21): 11334-11351.

【12】Xie Y, Chen J X, Miao J G. Design and implementation of an ultra-wideband multichannel receiver for K-band radiometer[J]. Electronics Optics & Control, 2014, 21(4): 48-51.
谢衍, 陈敬熊, 苗俊刚. K波段辐射计的超宽带多通道接收机设计与实现[J]. 电光与控制, 2014, 21(4): 48-51.

【13】Xie Y, Chen J X, Liu D W, et al. Development and calibration of a K-band ground-based hyperspectral microwave radiometer for water vapor measurements[J]. Progress in Electromagnetics Research, 2013, 140(4): 415-438.

【14】Liu D W, Lü C, Liu K, et al. Retrieval analysis of atmospheric water vapor for K-band ground-based hyperspectral microwave radiometer[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1835-1839.

【15】Rosenkranz P W. A model for the complex dielectric constant of supercooled liquid water at microwave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3): 1387-1393.

【16】Rodgers C D. Information content and optimisation of high spectral resolution remote measurements[J]. Advances in Space Research, 1998, 21(3): 361-367.

【17】Twomey S. Information content in remote sensing[J]. Applied Optics, 1974, 13(4): 942-945.

【18】Prunet P, Thépaut J N, Cassé V. The information content of clear sky IASI radiances and their potential for numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(545): 211-241.

【19】Shannon C E, Weaver W. Themathematical theory of information[J]. Mathematical Gazette, 1949, 97(333): 170-180.

【20】Rodgers C D. Inverse methods for atmospheric sounding: theory and practice[M]. Singapore: World Scientific Publishing, 2000.

引用该论文

Wang Yuxun,Wang Rui,Yan Wei. Channel Selection for Inversion of Atmospheric Relative Humidity Profile from Ground-Based Hyperspectral Microwave Radiometer[J]. Acta Optica Sinica, 2019, 39(4): 0428002

王玉训,王蕊,严卫. 地基高光谱微波辐射计反演大气相对湿度廓线的通道选择[J]. 光学学报, 2019, 39(4): 0428002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF