首页 > 论文 > 光学学报 > 39卷 > 4期(pp:427001--1)

基于标记配对相干态和轨道角动量的量子密钥分配

Quantum Key Distribution Based on Heralded Pair Coherent State and Orbital Angular Momentum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对标记配对相干态(HPCS)下量子密钥分配协议采用极化编码和相位编码带来基的依赖性问题, 研究了基于HPCS和轨道角动量(OAM)的非对称信道测量设备无关的量子密钥分配协议。分析了该协议在不同距离比率下的平均光子数、误码率、密钥生成率与信道传输损耗的关系。在HPCS和OAM下, 对比了对称信道和非对称信道测量设备无关的量子密钥协议的性能优劣。仿真结果表明:采用HPCS弥补了弱相干光源和标记单光子源的不足, 大大减少真空脉冲并增加了单光子脉冲; 随着信道传输损耗的增大, 密钥生成率和安全传输距离逐渐减小, 但非对称信道的性能仍优于对称信道的。

Abstract

In order to solve the problem that the quantum key distribution protocol based on the heralded pair coherent state (HPCS) adopts polarization coding and phase coding to bring the basis dependence, a measurement device independent quantum key distribution protocol for asymmetric channels based on the HPCS and orbital angular momentum(OAM) is studied. The relationship among the mean photon number, bit error rate, key generation rate and channel transmission loss of the protocol at different distance ratios is analyzed. The performances of measurement device independent quantum key distribution protocols for symmetric and asymmetric channels with the HPCS and OAM are compared. The simulation results show that the use of the HPCS compensates for the lack of weak coherent source and heralded single photon source, greatly reducing the vacuum pulse and increasing the single photon pulse. As the channel transmission loss increases, the key generation rate and the secure transmission distance gradually decrease, but the performance of the asymmetric channel is still better than that of the symmetric channel.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN918

DOI:10.3788/aos201939.0427001

所属栏目:量子光学

基金项目:国家自然科学基金 (61802302, 61472472, 61772418)、陕西省自然科学基础研究计划(2017JM6037)

收稿日期:2018-10-25

修改稿日期:2018-11-20

网络出版日期:--

作者单位    点击查看

何业锋:西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121西安邮电大学通信与信息工程学院, 陕西 西安 710121
杨红娟:西安邮电大学通信与信息工程学院, 陕西 西安 710121
王登:西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121西安邮电大学通信与信息工程学院, 陕西 西安 710121
李东琪:西安邮电大学通信与信息工程学院, 陕西 西安 710121
宋畅:西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:杨红娟(1529414158@qq.com)

【1】Bennett C H, Brassard G, Ekert A K. Quantum cryptography[J]. Scientific American, 1992, 267(4): 50-57.

【2】Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 2000, 85(2): 441-444.

【3】Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 2001, 48(3): 351-406.

【4】Gottesman D, Lo H K,Preskill J. Security of quantum key distribution with imperfect devices[J]. Quantum Information & Computation, 2002, 4(5) :325-360.

【5】Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device indep endent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.
东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

【6】Du Y N, Xie W Z, Jin X, et al. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 2015, 64(11): 110301.
杜亚男, 解文钟, 金璇, 等. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析[J]. 物理学报, 2015, 64(11): 110301.

【7】Zhou Y Y, Zhang H Q, Zhou X J, et al. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source[J]. Acta Physica Sinica, 2013, 62(20): 200302.
周媛媛, 张合庆, 周学军, 等. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析[J]. 物理学报, 2013, 62(20): 200302.

【8】He Y F, Song C, Li D Q, et al. Asymmetric-channel quantum key distribution based on heralded single-photon sources[J]. Acta Optica Sinica, 2018, 38(3): 0327001.
何业锋, 宋畅, 李东琪, 等. 基于指示单光子源的非对称信道量子密钥分配[J]. 光学学报, 2018, 38(3): 0327001.

【9】Kang D N, He Y F. Quantum key distribution protocols based on asymmetric channels of odd coherent sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.
康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001.

【10】Qiao W, Gao S C, Lei T, et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber[J]. Chinese Journal of Lasers, 2017, 44(4): 0406002.
乔文, 高社成, 雷霆, 等. 轨道角动量模式在柚子型微结构光纤中的传输[J]. 中国激光, 2017, 44(4): 0406002.

【11】Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703.
朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议[J]. 激光与光电子学进展, 2017, 54(12): 122703.

【12】Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060004.
朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制[J]. 激光与光电子学进展, 2018, 55(6): 060004.

【13】Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

【14】Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

【15】Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333.

【16】Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2008, 8(6/7): 622-635.

【17】Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 2009, 11(6): 065003.

【18】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

【19】Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307.

【20】Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(4): 042335.

【21】Zhou Y H, Yu Z W, Ki A, et al. Measurement-device-independent quantum key distribution via quantum blockade[J]. Scientific Reports, 2018, 8: 4115.

【22】Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle QKD immune to detector attacks[J]. Physical Review Letters, 2013, 111(13): 130501.

【23】Ferreira da Silva T, Vitoreti D, Xavier G B, et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits[J]. Physical Review A, 2013, 88(5): 052303.

【24】Yan L, Sun H, Zhao S M. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 2014, 30(11): 1275-1278.
颜龙, 孙豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 30(11): 1275-1278.

【25】He Y F, Li D Q, Song C, et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 2018, 45(7): 0712001.
何业锋, 李东琪, 宋畅, 等. 基于奇相干光源和轨道角动量的量子密钥分配协议[J]. 中国激光, 2018, 45(7): 0712001.

【26】Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 1986, 57(7): 827.

【27】Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state[J]. Quantum Information Processing, 2016, 15(10): 4253-4263.

【28】Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

【29】Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

引用该论文

He Yefeng,Yang Hongjuan,Wang Deng,Li Dongqi,Song Chang. Quantum Key Distribution Based on Heralded Pair Coherent State and Orbital Angular Momentum[J]. Acta Optica Sinica, 2019, 39(4): 0427001

何业锋,杨红娟,王登,李东琪,宋畅. 基于标记配对相干态和轨道角动量的量子密钥分配[J]. 光学学报, 2019, 39(4): 0427001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF